Aminophylline


Hf Acquisition Co Llc, Dba Healthfirst
Human Prescription Drug
NDC 51662-1204
Aminophylline is a human prescription drug labeled by 'Hf Acquisition Co Llc, Dba Healthfirst'. National Drug Code (NDC) number for Aminophylline is 51662-1204. This drug is available in dosage form of Injection, Solution. The names of the active, medicinal ingredients in Aminophylline drug includes Aminophylline Dihydrate - 25 mg/mL . The currest status of Aminophylline drug is Active.

Drug Information:

Drug NDC: 51662-1204
The labeler code and product code segments of the National Drug Code number, separated by a hyphen. Asterisks are no longer used or included within the product code segment to indicate certain configurations of the NDC.
Proprietary Name: Aminophylline
Also known as the trade name. It is the name of the product chosen by the labeler.
Product Type: Human Prescription Drug
Indicates the type of product, such as Human Prescription Drug or Human OTC Drug. This data element corresponds to the “Document Type” of the SPL submission for the listing.
Non Proprietary Name: Aminophylline
Also known as the generic name, this is usually the active ingredient(s) of the product.
Labeler Name: Hf Acquisition Co Llc, Dba Healthfirst
Name of Company corresponding to the labeler code segment of the ProductNDC.
Dosage Form: Injection, Solution
The translation of the DosageForm Code submitted by the firm. There is no standard, but values may include terms like `tablet` or `solution for injection`.The complete list of codes and translations can be found www.fda.gov/edrls under Structured Product Labeling Resources.
Status: Active
FDA does not review and approve unfinished products. Therefore, all products in this file are considered unapproved.
Substance Name:AMINOPHYLLINE DIHYDRATE - 25 mg/mL
This is the active ingredient list. Each ingredient name is the preferred term of the UNII code submitted.
Route Details:INTRAVENOUS
The translation of the Route Code submitted by the firm, indicating route of administration. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.

Marketing Information:

An openfda section: An annotation with additional product identifiers, such as NUII and UPC, of the drug product, if available.
Marketing Category: ANDA
Product types are broken down into several potential Marketing Categories, such as New Drug Application (NDA), Abbreviated New Drug Application (ANDA), BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.
Marketing Start Date: 13 Sep, 2018
This is the date that the labeler indicates was the start of its marketing of the drug product.
Marketing End Date: 22 Dec, 2025
This is the date the product will no longer be available on the market. If a product is no longer being manufactured, in most cases, the FDA recommends firms use the expiration date of the last lot produced as the EndMarketingDate, to reflect the potential for drug product to remain available after manufacturing has ceased. Products that are the subject of ongoing manufacturing will not ordinarily have any EndMarketingDate. Products with a value in the EndMarketingDate will be removed from the NDC Directory when the EndMarketingDate is reached.
Application Number: ANDA087242
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.
Listing Expiration Date: 31 Dec, 2023
This is the date when the listing record will expire if not updated or certified by the firm.

OpenFDA Information:

An openfda section: An annotation with additional product identifiers, such as NUII and UPC, of the drug product, if available.
Manufacturer Name:HF Acquisition Co LLC, DBA HealthFirst
Name of manufacturer or company that makes this drug product, corresponding to the labeler code segment of the NDC.
RxCUI:1724668
The RxNorm Concept Unique Identifier. RxCUI is a unique number that describes a semantic concept about the drug product, including its ingredients, strength, and dose forms.
UNII:C229N9DX94
Unique Ingredient Identifier, which is a non-proprietary, free, unique, unambiguous, non-semantic, alphanumeric identifier based on a substance’s molecular structure and/or descriptive information.
Pharmacologic Class:Methylxanthine [EPC]
Xanthines [CS]
These are the reported pharmacological class categories corresponding to the SubstanceNames listed above.

Packaging Information:

Package NDCDescriptionMarketing Start DateMarketing End DateSample Available
51662-1204-110 mL in 1 VIAL, SINGLE-DOSE (51662-1204-1)13 Sep, 2018N/ANo
51662-1204-325 POUCH in 1 CASE (51662-1204-3) / 1 mL in 1 POUCH (51662-1204-2)15 Jun, 2020N/ANo
Package NDC number, known as the NDC, identifies the labeler, product, and trade package size. The first segment, the labeler code, is assigned by the FDA. Description tells the size and type of packaging in sentence form. Multilevel packages will have the descriptions concatenated together.

Product Elements:

Aminophylline aminophylline aminophylline dihydrate theophylline anhydrous ethylenediamine water

Indications and Usage:

Indications & usage intravenous theophylline is indicated as an adjunct to inhaled beta-2 selective agonists and systemically administered corticosteroids for the treatment of acute exacerbations of the symptoms and reversible airflow obstruction associated with asthma and other chronic lung diseases, e.g., emphysema and chronic bronchitis.

Warnings:

Warnings concurrent illness: theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition: active peptic ulcer disease seizure disorders cardiac arrhythmias (not including bradyarrhythmias) conditions that reduce theophylline clearance: there are several readily identifiable causes of reduced theophylline clearance. if the infusion rate is not appropriately reduced in the presence of these risk factors, severe and potentially fatal theophylline toxicity can occur. careful consideration must be given to the benefits and risks of theophylline use and the need for more intensive monitoring of serum theophylline concentrations in patients with the following risk factors: age neonates (term and premature) children <1 year elderly (>60 years) concurrent diseases acute pulmonary edema congestive heart failure cor pulmonale fever; ≥102° for 24 hours or more; or lesser temperatur
e elevations for longer periods hypothyroidism liver disease; cirrhosis, acute hepatitis reduced renal function in infants <3 months of age sepsis with multi-organ failure shock cessation of smoking drug interactions adding a drug that inhibits theophylline metabolism (e.g., cimetidine, erythromycin, tacrine) or stopping a concurrently administered drug that enhances theophylline metabolism (e.g., carbamazepine, rifampin) (see precautions , drug interactions, table ii). when signs or symptoms of theophylline toxicity are present: whenever a patient receiving theophylline develops nausea or vomiting, particularly repetitive vomiting, or other signs or symptoms consistent with theophylline toxicity (even if another cause may be suspected), the intravenous infusion should be stopped and a serum theophylline concentration measured immediately. dosage increases increases in the dose of intravenous theophylline should not be made in response to an acute exacerbation of symptoms unless the steady-state serum theophylline concentration is <10 mcg/ml. as the rate of theophylline clearance may be dose-dependent (i.e., steady-state serum concentrations may increase disproportionately to the increase in dose), an increase in dose based upon a sub-therapeutic serum concentration measurement should be conservative. in general, limiting infusion rate increases to about 25% of the previous infusion rate will reduce the risk of unintended excessive increases in serum theophylline concentration (see dosage & administration , table vi).

Dosage and Administration:

Dosage & administration general considerations: the steady-state serum theophylline concentration is a function of the infusion rate and the rate of theophylline clearance in the individual patient. because of marked individual differences in the rate of theophylline clearance, the dose required to achieve a serum theophylline concentration in the 10-20 mcg/ml range varies fourfold among otherwise similar patients in the absence of factors known to alter theophylline clearance. for a given population there is no single theophylline dose that will provide both safe and effective serum concentrations for all patients. administration of the median theophylline dose required to achieve a therapeutic serum theophylline concentration in a given population may result in either sub-therapeutic or potentially toxic serum theophylline concentrations in individual patients. the dose of theophylline must be individualized on the basis of serum theophylline concentration measurements in order to ac
hieve a dose that will provide maximum potential benefit with minimal risk of adverse effects. when theophylline is used as an acute bronchodilator, the goal of obtaining a therapeutic serum concentration is best accomplished with an intravenous loading dose. because of rapid distribution into body fluids, the serum concentration (c) obtained from an initial loading dose (ld) is related primarily to the volume of distribution (v), the apparent space into which the drug diffuses: c = ld/v if a mean volume of distribution of about 0.5 l/kg is assumed (actual range is 0.3 to 0.7 l/kg), each mg/kg (ideal body weight) of theophylline administered as a loading dose over 30 minutes results in an average 2 mcg/ml increase in serum theophylline concentration. therefore, in a patient who has received no theophylline in the previous 24 hours, a loading dose of intravenous theophylline of 4.6 mg/kg (5.7 mg/kg as aminophylline), calculated on the basis of ideal body weight and administered over 30 minutes, on average, will produce a maximum post-distribution serum concentration of 10 mcg/ml with a range of 6-16 mcg/ml. when a loading dose becomes necessary in the patient who has already received theophylline, estimation of the serum concentration based upon the history is unreliable, and an immediate serum level determination is indicated. the loading dose can then be determined as follows: d = (desired c - measured c) (v) where d is the loading dose, c is the serum theophylline concentration, and v is the volume of distribution. the mean volume of distribution can be assumed to be 0.5 l/kg and the desired serum concentration should be conservative (e.g., 10 mcg/ml) to allow for the variability in the volume of distribution. a loading dose should not be given before obtaining a serum theophylline concentration if the patient has received any theophylline in the previous 24 hours. a serum concentration obtained 30 minutes after an intravenous loading dose, when distribution is complete, can be used to assess the need for and size of subsequent loading doses, if clinically indicated, and for guidance of continuing therapy. once a serum concentration of 10 to 15 mcg/ml has been achieved with the use of a loading dose(s), a constant intravenous infusion is started. the rate of administration is based upon mean pharmacokinetic parameters for the population and calculated to achieve a target serum concentration of 10 mcg/ml (see table v). for example, in non-smoking adults, initiation of a constant intravenous theophylline infusion of 0.4 mg/kg/hr (0.5 mg/kg/hr as aminophylline) at the completion of the loading dose, on average, will result in a steady-state concentration of 10 mcg/ml with a range of 7-26 mcg/ml. the mean and range of steady-state serum concentrations are similar when the average child (age 1 to 9 years) is given a loading dose of 4.6 mg/kg theophylline (5.7 mg/kg as aminophylline) followed by a constant intravenous infusion of 0.8 mg/kg/hr (1.0 mg/kg/hr as aminophylline). since there is large interpatient variability in theophylline clearance, serum concentrations will rise or fall when the patient's clearance is significantly different from the mean population value used to calculate the initial infusion rate. therefore, a second serum concentration should be obtained one expected half-life after starting the constant infusion (e.g., approximately 4 hours for children age 1 to 9 and 8 hours for nonsmoking adults; see table i for the expected half-life in additional patient populations) to determine if the concentration is accumulating or declining from the post loading dose level. if the level is declining as a result of a higher than average clearance, an additional loading dose can be administered and/or the infusion rate increased. in contrast, if the second sample demonstrates a higher level, accumulation of the drug can be assumed, and the infusion rate should be decreased before the concentration exceeds 20 mcg/ml. an additional sample is obtained 12 to 24 hours later to determine if further adjustments are required and then at 24-hour intervals to adjust for changes, if they occur. this empiric method, based upon mean pharmacokinetic parameters, will prevent large fluctuations in serum concentration during the most critical period of the patient's course. in patients with cor pulmonale, cardiac decompensation, or liver dysfunction, or in those taking drugs that markedly reduce theophylline clearance (e.g., cimetidine), the initial theophylline infusion rate should not exceed 17 mg/hr (21 mg/hr as aminophylline) unless serum concentrations can be monitored at 24-hour intervals. in these patients, 5 days may be required before steady-state is reached. theophylline distributes poorly into body fat, therefore, mg/kg dose should be calculated on the basis of ideal body weight. table v contains initial theophylline infusion rates following an appropriate loading dose recommended for patients in various age groups and clinical circumstances. table vi contains recommendations for final theophylline dosage adjustment based upon serum theophylline concentrations. application of these general dosing recommendations to individual patients must take into account the unique clinical characteristics of each patient. in general, these recommendations should serve as the upper limit for dosage adjustments in order to decrease the risk of potentially serious adverse events associated with unexpected large increases in serum theophylline concentration. table v. initial theophylline infusion rates following an appropriate loading dose. * to achieve a target concentration of 10 mcg/ml aminophylline=theophylline/0.8. use ideal body weight for obese patients. † lower initial dosage may be required for patients receiving other drugs that decrease theophylline clearance (e.g., cimetidine). ‡ to achieve a target concentration of 7.5 mcg/ml for neonatal apnea. § not to exceed 900 mg/day, unless serum levels indicate the need for a larger dose. ı not to exceed 400 mg/day, unless serum levels indicate the need for a larger dose. * to achieve a target concentration of 10 mcg/ml aminophylline=theophylline/0.8. use ideal body weight for obese patients. † lower initial dosage may be required for patients receiving other drugs that decrease theophylline clearance (e.g., cimetidine). ‡ to achieve a target concentration of 7.5 mcg/ml for neonatal apnea. § not to exceed 900 mg/day, unless serum levels indicate the need for a larger dose. ı not to exceed 400 mg/day, unless serum levels indicate the need for a larger dose. table vi. final dosage adjustment guided by serum theophylline concentration ¶ dose reduction and/or serum theophylline concentration measurement is indicated whenever adverse effects are present, physiologic abnormalities that can reduce theophylline clearance occur (e.g., sustained fever), or a drug that interacts with theophylline is added or discontinued (see warnings ). intravenous admixture incompatibility: although there have been reports of aminophylline precipitating in acidic media, these reports do not apply to the dilute solutions found in intravenous infusions. aminophylline injection should not be mixed in a syringe with other drugs but should be added separately to the intravenous solution. when an intravenous solution containing aminophylline is given "piggyback", the intravenous system already in place should be turned off while the aminophylline is infused if there is a potential problem with admixture incompatibility. because of the alkalinity of aminophylline containing solutions, drugs known to be alkali labile should be avoided in admixtures. these include epinephrine hcl, norepinephrine bitartrate, isoproterenol hcl and penicillin g potassium. it is suggested that specialized literature be consulted before preparing admixtures with aminophylline and other drugs. parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. do not administer unless solution is clear and container is undamaged. discard unused portion. do not use if crystals have separated from solution. dosage 1 dosage 2

Contraindications:

Contraindications aminophylline is contraindicated in patients with a history of hypersensitivity to theophylline or other components in the product including ethylenediamine.

Adverse Reactions:

Adverse reactions adverse reactions associated with theophylline are generally mild when peak serum theophylline concentrations are <20 mcg/ml and mainly consist of transient caffeine-like adverse effects such as nausea, vomiting, headache, and insomnia. when peak serum theophylline concentrations exceed 20 mcg/ml, however, theophylline produces a wide range of adverse reactions including persistent vomiting, cardiac arrhythmias, and intractable seizures which can be lethal (see overdosage ). other adverse reactions that have been reported at serum theophylline concentrations <20 mcg/ml include diarrhea, irritability, restlessness, fine skeletal muscle tremors, and transient diuresis. in patients with hypoxia secondary to copd, multifocal atrial tachycardia and flutter have been reported at serum theophylline concentrations ≥15 mcg/ml. there have been a few isolated reports of seizures at serum theophylline concentrations <20 mcg/ml in patients with an underlying neurological dise
ase or in elderly patients. the occurrence of seizures in elderly patients with serum theophylline concentrations <20 mcg/ml may be secondary to decreased protein binding resulting in a larger proportion of the total serum theophylline concentration in the pharmacologically active unbound form. the clinical characteristics of the seizures reported in patients with serum theophylline concentrations <20 mcg/ml have generally been milder than seizures associated with excessive serum theophylline concentrations resulting from an overdose (i.e., they have generally been transient, often stopped without anticonvulsant therapy, and did not result in neurological residua). products containing aminophylline may rarely produce severe allergic reactions of the skin, including exfoliative dermatitis, after systemic administration in a patient who has been previously sensitized by topical application of a substance containing ethylenediamine. in such patients skin patch tests are positive for ethylenediamine, a component of aminophylline, and negative for theophylline. pharmacists and other individuals who experience repeated skin exposure while physically handling aminophylline may develop a contact dermatitis due to the ethylenediamine component. table iv. manifestations of theophylline toxicity* percentage of patients reported with sign or symptom * these data are derived from two studies in patients with serum theophylline concentrations >30 mcg/ml. in the first study (study #1 – shanon, ann intern med 1993;119:1161-67), data were prospectively collected from 249 consecutive cases of theophylline toxicity referred to a regional poison center for consultation. in the second study (study #2 – sessler, am j med 1990; 88:567-76), data were retrospectively collected from 116 cases with serum theophylline concentrations >30 mcg/ml among 6000 blood samples obtained for measurement of serum theophylline concentrations in three emergency departments. differences in the incidence of manifestations of theophylline toxicity between the two studies may reflect sample selection as a result of study design (e.g., in study #1, 48% of the patients had acute intoxications versus only 10% in study #2) and different methods of reporting results. ** nr = not reported in a comparable manner. adverse

Overdosage:

Overdosage general: the chronicity and pattern of theophylline overdosage significantly influences clinical manifestations of toxicity, management and outcome. there are two common presentations: 1) acute overdose, i.e., infusion of an excessive loading dose or excessive maintenance infusion rate for less than 24 hours, and 2) chronic overdosage, i.e., excessive maintenance infusion rate for greater than 24 hours. the most common causes of chronic theophylline overdosage include clinician prescribing of an excessive dose or a normal dose in the presence of factors known to decrease the rate of theophylline clearance and increasing the dose in response to an exacerbation of symptoms without first measuring the serum theophylline concentration to determine whether a dose increase is safe. several studies have described the clinical manifestations of theophylline overdose following oral administration and attempted to determine the factors that predict life-threatening toxicity. in general, patients who experience an acute overdose are less likely to experience seizures than patients who have experienced a chronic overdosage, unless the peak serum theophylline concentration is >100 mcg/ml. after a chronic overdosage, generalized seizures, life-threatening cardiac arrhythmias, and death may occur at serum theophylline concentrations >30 mcg/ml. the severity of toxicity after chronic overdosage is more strongly correlated with the patient's age than the peak serum theophylline concentration; patients >60 years are at the greatest risk for severe toxicity and mortality after a chronic overdosage. pre-existing or concurrent disease may also significantly increase the susceptibility of a patient to a particular toxic manifestation, e.g., patients with neurologic disorders have an increased risk of seizures and patients with cardiac disease have an increased risk of cardiac arrhythmias for a given serum theophylline concentration compared to patients without the underlying disease. the frequency of various reported manifestations of oral theophylline overdose according to the mode of overdose are listed in table iv. other manifestations of theophylline toxicity include increases in serum calcium, creatine kinase, myoglobin and leukocyte count, decreases in serum phosphate and magnesium, acute myocardial infarction, and urinary retention in men with obstructive uropathy. seizures associated with serum theophylline concentrations >30 mcg/ml are often resistant to anticonvulsant therapy and may result in irreversible brain injury if not rapidly controlled. death from theophylline toxicity is most often secondary to cardiorespiratory arrest and/or hypoxic encephalopathy following prolonged generalized seizures or intractable cardiac arrhythmias causing hemodynamic compromise. overdose management: general recommendations for patients with symptoms of theophylline overdose or serum theophylline concentrations >30 mcg/ml while receiving intravenous theophylline. 1. stop the theophylline infusion. 2. while simultaneously instituting treatment, contact a regional poison center to obtain updated information and advice on individualizing the recommendations that follow. 3. institute supportive care, including establishment of intravenous access, maintenance of the airway, and electrocardiographic monitoring. 4. treatment of seizures: because of the high morbidity and mortality associated with theophylline-induced seizures, treatment should be rapid and aggressive. anticonvulsant therapy should be initiated with an intravenous benzodiazepine, e.g., diazepam, in increments of 0.1 - 0.2 mg/kg every 1 - 3 minutes until seizures are terminated. repetitive seizures should be treated with a loading dose of phenobarbital (20 mg/kg infused over 30 - 60 minutes). case reports of theophylline overdose in humans and animal studies suggest that phenytoin is ineffective in terminating theophylline-induced seizures. the doses of benzodiazepines and phenobarbital required to terminate theophylline-induced seizures are close to the doses that may cause severe respiratory depression or respiratory arrest; the clinician should therefore be prepared to provide assisted ventilation. elderly patients and patients with copd may be more susceptible to the respiratory depressant effects of anticonvulsants. barbiturate-induced coma or administration of general anesthesia may be required to terminate repetitive seizures or status epilepticus. general anesthesia should be used with caution in patients with theophylline overdose because fluorinated volatile anesthetics may sensitize the myocardium to endogenous catecholamines released by theophylline. enflurane appears less likely to be associated with this effect than halothane and may, therefore, be safer. neuromuscular blocking agents alone should not be used to terminate seizures since they abolish the musculoskeletal manifestations without terminating seizure activity in the brain. 5. anticipate need for anticonvulsants: in patients with theophylline overdose who are at high risk for theophylline-induced seizures, e.g., patients with acute overdoses and serum theophylline concentrations >100 mcg/ml or chronic overdosage in patients >60 years of age with serum theophylline concentrations >30 mcg/ml, the need for anticonvulsant therapy should be anticipated. a benzodiazepine such as diazepam should be drawn into a syringe and kept at the patient's bedside and medical personnel qualified to treat seizures should be immediately available. in selected patients at high risk for theophylline-induced seizures, consideration should be given to the administration of prophylactic anticonvulsant therapy. situations where prophylactic anticonvulsant therapy should be considered in high risk patients include anticipated delays in instituting methods for extracorporeal removal of theophylline (e.g., transfer of a high risk patient from one health care facility to another for extracorporeal removal) and clinical circumstances that significantly interfere with efforts to enhance theophylline clearance (e.g., a neonate where dialysis may not be technically feasible or a patient with vomiting unresponsive to antiemetics who is unable to tolerate multiple-dose oral activated charcoal). in animal studies, prophylactic administration of phenobarbital, but not phenytoin, has been shown to delay the onset of theophylline-induced generalized seizures and to increase the dose of theophylline required to induce seizures (i.e., markedly increases the ld 50). although there are no controlled studies in humans, a loading dose of intravenous phenobarbital (20 mg/kg infused over 60 minutes) may delay or prevent life-threatening seizures in high risk patients while efforts to enhance theophylline clearance are continued. phenobarbital may cause respiratory depression, particularly in elderly patients and patients with copd. 6. treatment of cardiac arrhythmias: sinus tachycardia and simple ventricular premature beats are not harbingers of life-threatening arrhythmias, they do not require treatment in the absence of hemodynamic compromise, and they resolve with declining serum theophylline concentrations. other arrhythmias, especially those associated with hemodynamic compromise, should be treated with antiarrhythmic therapy appropriate for the type of arrhythmia. 7. serum theophylline concentration monitoring: the serum theophylline concentration should be measured immediately upon presentation, 2 - 4 hours later, and then at sufficient intervals, e.g., every 4 hours, to guide treatment decisions and to assess the effectiveness of therapy. serum theophylline concentrations may continue to increase after presentation of the patient for medical care as a result of continued absorption of theophylline from the gastrointestinal tract. serial monitoring of serum theophylline serum concentrations should be continued until it is clear that the concentration is no longer rising and has returned to nontoxic levels. 8. general monitoring procedures: electrocardiographic monitoring should be initiated on presentation and continued until the serum theophylline level has returned to a nontoxic level. serum electrolytes and glucose should be measured on presentation and at appropriate intervals indicated by clinical circumstances. fluid and electrolyte abnormalities should be promptly corrected. monitoring and treatment should be continued until the serum concentration decreases below 20 mcg/ml. 9. enhance clearance of theophylline: multiple-dose oral activated charcoal (e.g., 0.5 mg/kg up to 20 g, every two hours) increases the clearance of theophylline at least twofold by adsorption of theophylline secreted into gastrointestinal fluids. charcoal must be retained in, and pass through, the gastrointestinal tract to be effective; emesis should therefore be controlled by administration of appropriate antiemetics. alternatively, the charcoal can be administered continuously through a nasogastric tube in conjunction with appropriate antiemetics. a single dose of sorbitol may be administered with the activated charcoal to promote stooling to facilitate clearance of the adsorbed theophylline from the gastrointestinal tract. sorbitol alone does not enhance clearance of theophylline and should be dosed with caution to prevent excessive stooling which can result in severe fluid and electrolyte imbalances. commercially available fixed combinations of liquid charcoal and sorbitol should be avoided in young children and after the first dose in adolescents and adults since they do not allow for individualization of charcoal and sorbitol dosing. in patients with intractable vomiting, extracorporeal methods of theophylline removal should be instituted (see overdosage, extracorporeal removal). specific recommendations: acute overdose (e.g., excessive loading dose or excessive infusion rate <24 hours) a. serum concentration >20 <30 mcg/ml 1. stop the theophylline infusion. 2. monitor the patient and obtain a serum theophylline concentration in 2 - 4 hours to insure that the concentration is decreasing. b. serum concentration >30 <100 mcg/ml 1. stop the theophylline infusion. 2. administer multiple dose oral activated charcoal and measures to control emesis. 3. monitor the patient and obtain serial theophylline concentrations every 2 - 4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. 4. institute extracorporeal removal if emesis, seizures, or cardiac arrhythmias cannot be adequately controlled (see overdosage, extracorporeal removal). c. serum concentration >100 mcg/ml 1. stop the theophylline infusion. 2. consider prophylactic anticonvulsant therapy. 3. administer multiple-dose oral activated charcoal and measures to control emesis. 4. consider extracorporeal removal, even if the patient has not experienced a seizure (see overdosage, extracorporeal removal). 5. monitor the patient and obtain serial theophylline concentrations every 2 - 4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. chronic overdosage (e.g., excessive infusion rate for greater than 24 hours) a. serum concentration >20 <30 mcg/ml (with manifestations of theophylline toxicity) 1. stop the theophylline infusion. 2. monitor the patient and obtain a serum theophylline concentration in 2 - 4 hours to insure that the concentration is decreasing. b. serum concentration >30 mcg/ml in patients <60 years of age 1. stop the theophylline infusion. 2. administer multiple-dose oral activated charcoal and measures to control emesis. 3. monitor the patient and obtain serial theophylline concentrations every 2 - 4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. 4. institute extracorporeal removal if emesis, seizures, or cardiac arrhythmias cannot be adequately controlled (see overdosage, extracorporeal removal). c. serum concentration >30 mcg/ml in patients ≥60 years of age 1. stop the theophylline infusion. 2. consider prophylactic anticonvulsant therapy. 3. administer multiple-dose oral activated charcoal and measures to control emesis. 4. consider extracorporeal removal even if the patient has not experienced a seizure (see overdosage, extracorporeal removal). 5. monitor the patient and obtain serial theophylline concentrations every 2 - 4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. extracorporeal removal: increasing the rate of theophylline clearance by extracorporeal methods may rapidly decrease serum concentrations, but the risks of the procedure must be weighed against the potential benefit. charcoal hemoperfusion is the most effective method of extracorporeal removal, increasing theophylline clearance up to six fold, but serious complications, including hypotension, hypocalcemia, platelet consumption and bleeding diatheses may occur. hemodialysis is about as efficient as multiple-dose oral activated charcoal and has a lower risk of serious complications than charcoal hemoperfusion. hemodialysis should be considered as an alternative when charcoal hemoperfusion is not feasible and multiple-dose oral charcoal is ineffective because of intractable emesis. serum theophylline concentrations may rebound 5 - 10 mcg/ml after discontinuation of charcoal hemoperfusion or hemodialysis due to redistribution of theophylline from the tissue compartment. peritoneal dialysis is ineffective for theophylline removal; exchange transfusions in neonates have been minimally effective.

Description:

Description aminophylline injection, usp is a sterile, nonpyrogenic solution of aminophylline in water for injection. aminophylline (dihydrate) is approximately 79% of anhydrous theophylline by weight. aminophylline injection is administered by slow intravenous injection or diluted and administered by intravenous infusion. the solution contains no bacteriostat or antimicrobial agent and is intended for use only as a single-dose injection. when smaller doses are required the unused portion should be discarded. aminophylline is a 2:1 complex of theophylline and ethylenediamine. theophylline is structurally classified as a methylxanthine. aminophylline occurs as a white or slightly yellowish granule or powder, with a slight ammoniacal odor. aminophylline has the chemical name 1h-purine-2, 6-dione, 3,7-dihydro-1,3-dimethyl-, compound with 1,2-ethanediamine (2:1). the structural formula of aminophylline (dihydrate) is as follows: the molecular formula of aminophylline dihydrate is c16h24n10o4 • 2(h2o) with a molecular weight of 456.46. aminophylline injection, usp contains aminophylline (calculated as the dihydrate) 25 mg/ml (equivalent to 19.7 mg/ml anhydrous theophylline) prepared with the aid of ethylenediamine. the solution may contain an excess of ethylenediamine for ph adjustment. ph is 8.8 (8.6 to 9.0). the osmolar concentration is 0.17 mosmol/ml (calc.). structure

Clinical Pharmacology:

Clinical pharmacology mechanism of action: theophylline has two distinct actions in the airways of patients with reversible obstruction; smooth muscle relaxation (i.e., bronchodilation) and suppression of the response of the airways to stimuli (i.e., nonbronchodilator prophylactic effects). while the mechanisms of action of theophylline are not known with certainty, studies in animals suggest that bronchodilation is mediated by the inhibition of two isozymes of phosphodiesterase (pde iii and, to a lesser extent, pde iv), while nonbronchodilator prophylactic actions are probably mediated through one or more different molecular mechanisms, that do not involve inhibition of pde iii or antagonism of adenosine receptors. some of the adverse effects associated with theophylline appear to be mediated by inhibition of pde iii (e.g., hypotension, tachycardia, headache, and emesis) and adenosine receptor antagonism (e.g., alterations in cerebral blood flow). theophylline increases the force of c
ontraction of diaphragmatic muscles. this action appears to be due to enhancement of calcium uptake through an adenosine-mediated channel. serum concentration-effect relationship: bronchodilation occurs over the serum theophylline concentration range of 5 - 20 mcg/ml. clinically important improvement in symptom control and pulmonary function has been found in most studies to require serum theophylline concentrations >10 mcg/ml. at serum theophylline concentrations >20 mcg/ml, both the frequency and severity of adverse reactions increase. in general, maintaining the average serum theophylline concentration between 10 and 15 mcg/ml will achieve most of the drug's potential therapeutic benefit while minimizing the risk of serious adverse events. pharmacokinetics: overview: the pharmacokinetics of theophylline vary widely among similar patients and cannot be predicted by age, sex, body weight or other demographic characteristics. in addition, certain concurrent illnesses and alterations in normal physiology (see table i) and co-administration of other drugs (see table ii) can significantly alter the pharmacokinetic characteristics of theophylline. within-subject variability in metabolism has also been reported in some studies, especially in acutely ill patients. it is, therefore, recommended that serum theophylline concentrations be measured frequently in acutely ill patients receiving intravenous theophylline (e.g., at 24-hr. intervals). more frequent measurements should be made during the initiation of therapy and in the presence of any condition that may significantly alter theophylline clearance (see precautions , effects on laboratory tests). table i. mean and range of total body clearance and half-life of theophylline related to age and altered physiological states¶ ¶ for various north american patient populations from literature reports. different rates of elimination and consequent dosage requirements have been observed among other peoples. * clearance represents the volume of blood completely cleared of theophylline by the liver in one minute. values listed were generally determined at serum theophylline concentrations, <20 mcg/ml; clearance may decrease and half-life may increase at higher serum concentrations due to nonlinear pharmacokinetics. †† reported range or estimated range (mean ± 2 sd) where actual range not reported. † nr = not reported or not reported in a comparable format. ** median note: in addition to the factors listed above, theophylline clearance is increased and half-life decreased by low carbohydrate/high protein diets, parenteral nutrition, and daily consumption of charcoal-broiled beef. a high carbohydrate/low protein diet can decrease the clearance and prolong the half-life of theophylline. distribution: once theophylline enters the systemic circulation, about 40% is bound to plasma protein, primarily albumin. unbound theophylline distributes throughout body water, but distributes poorly into body fat. the apparent volume of distribution of theophylline is approximately 0.45 l/kg (range 0.3 - 0.7 l/kg) based on ideal body weight. theophylline passes freely across the placenta, into breast milk and into the cerebrospinal fluid (csf). saliva theophylline concentrations approximate unbound serum concentrations, but are not reliable for routine or therapeutic monitoring unless special techniques are used. an increase in the volume of distribution of theophylline, primarily due to reduction in plasma protein binding, occurs in premature neonates, patients with hepatic cirrhosis, uncorrected acidemia, the elderly and in women during the third trimester of pregnancy. in such cases, the patient may show signs of toxicity at total (bound + unbound) serum concentrations of theophylline in the therapeutic range (10 - 20 mcg/ml) due to elevated concentrations of the pharmacologically active unbound drug. similarly, a patient with decreased theophylline binding may have a sub-therapeutic total drug concentration while the pharmacologically active unbound concentration is in the therapeutic range. if only total serum theophylline concentration is measured, this may lead to an unnecessary and potentially dangerous dose increase. in patients with reduced protein binding, measurement of unbound serum theophylline concentration provides a more reliable means of dosage adjustment than measurement of total serum theophylline concentration. generally, concentrations of unbound theophylline should be maintained in the range of 6 - 12 mcg/ml. metabolism: in adults and children beyond one year of age, approximately 90% of the dose is metabolized in the liver. biotransformation takes place through demethylation to 1-methylxanthine and 3-methylxanthine and hydroxylation to 1,3-dimethyluric acid. 1-methylxanthine is further hydroxylated, by xanthine oxidase, to 1-methyluric acid. about 6% of a theophylline dose is n-methylated to caffeine. theophylline demethylation to 3-methylxanthine is catalyzed by cytochrome p-450 1a2, while cytochromes p-450 2e1 and p-450 3a3 catalyze the hydroxylation to 1,3-dimethyluric acid. demethylation to 1-methylxanthine appears to be catalyzed either by cytochrome p-450 1a2 or a closely related cytochrome. in neonates, the n-demethylation pathway is absent while the function of the hydroxylation pathway is markedly deficient. the activity of these pathways slowly increases to maximal levels by one year of age. caffeine and 3-methylxanthine are the only theophylline metabolites with pharmacologic activity. 3-methylxanthine has approximately one tenth the pharmacologic activity of theophylline and serum concentrations in adults with normal renal function are <1 mcg/ml. in patients with end-stage renal disease, 3-methylxanthine may accumulate to concentrations that approximate the unmetabolized theophylline concentration. caffeine concentrations are usually undetectable in adults regardless of renal function. in neonates, caffeine may accumulate to concentrations that approximate the unmetabolized theophylline concentration and thus, exert a pharmacologic effect. both the n-demethylation and hydroxylation pathways of theophylline biotransformation are capacity-limited. due to the wide intersubject variability of the rate of theophylline metabolism, nonlinearity of elimination may begin in some patients at serum theophylline concentrations <10 mcg/ml. since this nonlinearity results in more than proportional changes in serum theophylline concentrations with changes in dose, it is advisable to make increases or decreases in dose in small increments in order to achieve desired changes in serum theophylline concentrations (see dosage & administration , table vi). accurate prediction of dose-dependency of theophylline metabolism in patients a priori is not possible, but patients with very high initial clearance rates (i.e., low steady state serum theophylline concentrations at above average doses) have the greatest likelihood of experiencing large changes in serum theophylline concentration in response to dosage changes. excretion: in neonates, approximately 50% of the theophylline dose is excreted unchanged in the urine. beyond the first three months of life, approximately 10% of the theophylline dose is excreted unchanged in the urine. the remainder is excreted in the urine mainly as 1,3-dimethyluric acid (35 - 40%), 1-methyluric acid (20 - 25%) and 3-methylxanthine (15 - 20%). since little theophylline is excreted unchanged in the urine and since active metabolites of theophylline (i.e., caffeine, 3-methylxanthine) do not accumulate to clinically significant levels even in the face of end-stage renal disease, no dosage adjustment for renal insufficiency is necessary in adults and children >3 months of age. in contrast, the large fraction of the theophylline dose excreted in the urine as unchanged theophylline and caffeine in neonates requires careful attention to dose reduction and frequent monitoring of serum theophylline concentrations in neonates with reduced renal function (see warnings ). serum concentrations at steady state: in a patient who has received no theophylline in the previous 24 hours, a loading dose of intravenous theophylline of 4.6 mg/kg (5.7 mg/kg as aminophylline), calculated on the basis of ideal body weight and administered over 30 minutes, on average, will produce a maximum post-distribution serum concentration of 10 mcg/ml with a range of 6-16 mcg/ml. in non-smoking adults, initiation of a constant intravenous theophylline infusion of 0.4 mg/kg/hr (0.5 mg/kg/hr as aminophylline) at the completion of the loading dose, on average, will result in a steady-state concentration of 10 mcg/ml with a range of 7-26 mcg/ml. the mean and range of steady-state serum concentrations are similar when the average child (age 1 to 9 years) is given a loading dose of 4.6 mg/kg theophylline (5.7 mg/kg as aminophylline) followed by a constant intravenous infusion of 0.8 mg/kg/hr (1.0 mg/kg/hr as aminophylline) (see dosage & administration ). special populations (see table i for mean clearance and half-life values) geriatric: the clearance of theophylline is decreased by an average of 30% in healthy elderly adults (>60 yrs.) compared to healthy young adults. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in elderly patients (see warnings ). pediatrics: the clearance of theophylline is very low in neonates (see warnings ). theophylline clearance reaches maximal values by one year of age, remains relatively constant until about 9 years of age and then slowly decreases by approximately 50% to adult values at about age 16. renal excretion of unchanged theophylline in neonates amounts to about 50% of the dose, compared to about 10% in children older than three months and in adults. careful attention to dosage selection and monitoring of serum theophylline concentrations are required in children (see warnings and dosage & administration ). gender: gender differences in theophylline clearance are relatively small and unlikely to be of clinical significance. significant reduction in theophylline clearance, however, has been reported in women on the 20th day of the menstrual cycle and during the third trimester of pregnancy. race: pharmacokinetic differences in theophylline clearance due to race have not been studied. renal insufficiency: only a small fraction, e.g., about 10%, of the administered theophylline dose is excreted unchanged in the urine of children greater than three months of age and adults. since little theophylline is excreted unchanged in the urine and since active metabolites of theophylline (i.e., caffeine, 3-methylxanthine) do not accumulate to clinically significant levels even in the face of end-stage renal disease, no dosage adjustment for renal insufficiency is necessary in adults and children >3 months of age. in contrast, approximately 50% of the administered theophylline dose is excreted unchanged in the urine in neonates. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in neonates with decreased renal function (see warnings ). hepatic insufficiency: theophylline clearance is decreased by 50% or more in patients with hepatic insufficiency (e.g., cirrhosis, acute hepatitis, cholestasis). careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in patients with reduced hepatic function (see warnings ). congestive heart failure (chf): theophylline clearance is decreased by 50% or more in patients with chf. the extent of reduction in theophylline clearance in patients with chf appears to be directly correlated to the severity of the cardiac disease. since theophylline clearance is independent of liver blood flow, the reduction in clearance appears to be due to impaired hepatocyte function rather than reduced perfusion. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in patients with chf (see warnings ). smokers: tobacco and marijuana smoking appears to increase the clearance of theophylline by induction of metabolic pathways. theophylline clearance has been shown to increase by approximately 50% in young adult tobacco smokers and by approximately 80% in elderly tobacco smokers compared to nonsmoking subjects. passive smoke exposure has also been shown to increase theophylline clearance by up to 50%. abstinence from tobacco smoking for one week causes a reduction of approximately 40% in theophylline clearance. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in patients who stop smoking (see warnings ). use of nicotine gum has been shown to have no effect on theophylline clearance. fever: fever, regardless of its underlying cause, can decrease the clearance of theophylline. the magnitude and duration of the fever appear to be directly correlated to the degree of decrease of theophylline clearance. precise data are lacking, but a temperature of 39°c (102°f) for at least 24 hours is probably required to produce a clinically significant increase in serum theophylline concentrations. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in patients with sustained fever (see warnings ). miscellaneous: other factors associated with decreased theophylline clearance include the third trimester of pregnancy, sepsis with multiple organ failure, and hypothyroidism. careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in patients with any of these conditions (see warnings ). other factors associated with increased theophylline clearance include hyperthyroidism and cystic fibrosis. clinical studies: inhaled beta-2 selective agonists and systemically administered corticosteroids are the treatments of first choice for management of acute exacerbations of asthma. the results of controlled clinical trials on the efficacy of adding intravenous theophylline to inhaled beta-2 selective agonists and systemically administered corticosteroids in the management of acute exacerbations of asthma have been conflicting. most studies in patients treated for acute asthma exacerbations in an emergency department have shown that addition of intravenous theophylline does not produce greater bronchodilation and increases the risk of adverse effects. in contrast, other studies have shown that addition of intravenous theophylline is beneficial in the treatment of acute asthma exacerbations in patients requiring hospitalization, particularly in patients who are not responding adequately to inhaled beta-2 selective agonists. in patients with chronic obstructive pulmonary disease (copd), clinical studies have shown that theophylline decreases dyspnea, air trapping, the work of breathing, and improves contractility of diaphragmatic muscles with little or no improvement in pulmonary function measurements. clinical pharm tabel

How Supplied:

How supplied aminophylline injection is supplied in the following dosage forms. ndc 51662-1204-1 aminophylline injection usp 250mg (25mg/ml) 10ml vial ndc 51662-1204-2 pouch containing a single aminophylline injection usp 250mg (25mg/ml) 10ml vial ndc 51662-1204-3 case of 25 pouches containing a single aminophylline injection usp 250mg (25mg/ml) 10ml vial hf acquisition co llc, dba healthfirst mukilteo, wa 98275 aminophylline injection, usp 25 mg/ml is also supplied in single-dose containers as follows: store at 20 to 25°c (68 to 77°f). [see usp controlled room temperature.] protect from light. store in carton until time of use. single-dose container. discard unused portion. distributed by hospira, inc., lake forest, il 60045 usa lab-1171-1.0 revised: 03/2018 supplied logo

Package Label Principal Display Panel:

Principle display panel, 10 ml vial - ndc 0409-5921-01 10 ml single-dose aminophylline injection, usp 250 mg (25 mg/ml) protect from light. do not use if crystals have separated from solution. hospira, inc., lake forest, il 60045 usa rx only vial label

Principle label display, serialized label serialized label

Principal display label - ndc 51662-1204-2 serialized pouch label serialized pouch label

Principal display label - ndc 51662-1204-3 serialized case label serialized case label

Principal display label - ndc 51662-1204-3 serialized rfid case label serialized rfid case label

Principal display panel - ndc 0409-5921-16 10 ml single-dose aminophylline injection, usp 250 mg/10 ml (25 mg/ml) protect from light. do not use if crystals have separated from solution. hospira, inc., lake forest, il 60045 usa rx only vial label


Comments/ Reviews:

* Data of this site is collected from www.fda.gov. This page is for informational purposes only. Always consult your physician with any questions you may have regarding a medical condition.