Ephedrine Sulfate


Northstar Rx Llc
Human Prescription Drug
NDC 16714-037
Ephedrine Sulfate is a human prescription drug labeled by 'Northstar Rx Llc'. National Drug Code (NDC) number for Ephedrine Sulfate is 16714-037. This drug is available in dosage form of Injection. The names of the active, medicinal ingredients in Ephedrine Sulfate drug includes Ephedrine Sulfate - 50 mg/mL . The currest status of Ephedrine Sulfate drug is Active.

Drug Information:

Drug NDC: 16714-037
The labeler code and product code segments of the National Drug Code number, separated by a hyphen. Asterisks are no longer used or included within the product code segment to indicate certain configurations of the NDC.
Proprietary Name: Ephedrine Sulfate
Also known as the trade name. It is the name of the product chosen by the labeler.
Product Type: Human Prescription Drug
Indicates the type of product, such as Human Prescription Drug or Human OTC Drug. This data element corresponds to the “Document Type” of the SPL submission for the listing.
Non Proprietary Name: Ephedrine Sulfate
Also known as the generic name, this is usually the active ingredient(s) of the product.
Labeler Name: Northstar Rx Llc
Name of Company corresponding to the labeler code segment of the ProductNDC.
Dosage Form: Injection
The translation of the DosageForm Code submitted by the firm. There is no standard, but values may include terms like `tablet` or `solution for injection`.The complete list of codes and translations can be found www.fda.gov/edrls under Structured Product Labeling Resources.
Status: Active
FDA does not review and approve unfinished products. Therefore, all products in this file are considered unapproved.
Substance Name:EPHEDRINE SULFATE - 50 mg/mL
This is the active ingredient list. Each ingredient name is the preferred term of the UNII code submitted.
Route Details:INTRAVENOUS
The translation of the Route Code submitted by the firm, indicating route of administration. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.

Marketing Information:

An openfda section: An annotation with additional product identifiers, such as NUII and UPC, of the drug product, if available.
Marketing Category: ANDA
Product types are broken down into several potential Marketing Categories, such as New Drug Application (NDA), Abbreviated New Drug Application (ANDA), BLA, OTC Monograph, or Unapproved Drug. One and only one Marketing Category may be chosen for a product, not all marketing categories are available to all product types. Currently, only final marketed product categories are included. The complete list of codes and translations can be found at www.fda.gov/edrls under Structured Product Labeling Resources.
Marketing Start Date: 02 Dec, 2020
This is the date that the labeler indicates was the start of its marketing of the drug product.
Marketing End Date: 22 Dec, 2025
This is the date the product will no longer be available on the market. If a product is no longer being manufactured, in most cases, the FDA recommends firms use the expiration date of the last lot produced as the EndMarketingDate, to reflect the potential for drug product to remain available after manufacturing has ceased. Products that are the subject of ongoing manufacturing will not ordinarily have any EndMarketingDate. Products with a value in the EndMarketingDate will be removed from the NDC Directory when the EndMarketingDate is reached.
Application Number: ANDA212932
This corresponds to the NDA, ANDA, or BLA number reported by the labeler for products which have the corresponding Marketing Category designated. If the designated Marketing Category is OTC Monograph Final or OTC Monograph Not Final, then the Application number will be the CFR citation corresponding to the appropriate Monograph (e.g. “part 341”). For unapproved drugs, this field will be null.
Listing Expiration Date: 31 Dec, 2023
This is the date when the listing record will expire if not updated or certified by the firm.

OpenFDA Information:

An openfda section: An annotation with additional product identifiers, such as NUII and UPC, of the drug product, if available.
Manufacturer Name:NorthStar Rx LLC
Name of manufacturer or company that makes this drug product, corresponding to the labeler code segment of the NDC.
RxCUI:1116294
The RxNorm Concept Unique Identifier. RxCUI is a unique number that describes a semantic concept about the drug product, including its ingredients, strength, and dose forms.
Original Packager:Yes
Whether or not the drug has been repackaged for distribution.
UPC:0316714037011
UPC stands for Universal Product Code.
UNII:U6X61U5ZEG
Unique Ingredient Identifier, which is a non-proprietary, free, unique, unambiguous, non-semantic, alphanumeric identifier based on a substance’s molecular structure and/or descriptive information.
Pharmacologic Class:Adrenergic alpha-Agonists [MoA]
Adrenergic beta-Agonists [MoA]
Increased Norepinephrine Activity [PE]
Norepinephrine Releasing Agent [EPC]
alpha-Adrenergic Agonist [EPC]
beta-Adrenergic Agonist [EPC]
These are the reported pharmacological class categories corresponding to the SubstanceNames listed above.

Packaging Information:

Package NDCDescriptionMarketing Start DateMarketing End DateSample Available
16714-037-1010 VIAL, SINGLE-DOSE in 1 CARTON (16714-037-10) / 1 mL in 1 VIAL, SINGLE-DOSE (16714-037-01)02 Dec, 2020N/ANo
16714-037-2525 VIAL, SINGLE-DOSE in 1 CARTON (16714-037-25) / 1 mL in 1 VIAL, SINGLE-DOSE (16714-037-01)02 Dec, 2020N/ANo
Package NDC number, known as the NDC, identifies the labeler, product, and trade package size. The first segment, the labeler code, is assigned by the FDA. Description tells the size and type of packaging in sentence form. Multilevel packages will have the descriptions concatenated together.

Product Elements:

Ephedrine sulfate ephedrine sulfate ephedrine sulfate ephedrine acetic acid sodium hydroxide water

Drug Interactions:

7 drug interactions interactions that augment the pressor effect oxytocin and oxytocic drugs clinical impact: serious postpartum hypertension has been described in patients who received both a vasopressor (i.e., methoxamine, phenylephrine, ephedrine) and an oxytocic (i.e., methylergonovine, ergonovine). some of these patients experienced a stroke. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and an oxytocic. clonidine, propofol, monoamine oxidase inhibitors (maois), atropine clinical impact: these drugs augment the pressor effect of ephedrine. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and any of these drugs. interactions that antagonize the pressor effect clinical impact: these drugs antagonize the pressor effect of ephedrine. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and any of these drugs. examples: α-adrenergic ant
agonists, β-adrenergic receptor antagonists, reserpine, quinidine, mephentermine other drug interactions guanethidine clinical impact: ephedrine may inhibit the neuron blockage produced by guanethidine, resulting in loss of antihypertensive effectiveness. intervention: clinician should monitor patient for blood pressor response and adjust the dosage or choice of pressor accordingly. rocuronium clinical impact: ephedrine may reduce the onset time of neuromuscular blockade when used for intubation with rocuronium if administered simultaneously with anesthetic induction. intervention: be aware of this potential interaction. no treatment or other interventions are needed. epidural anesthesia clinical impact: ephedrine may decrease the efficacy of epidural blockade by hastening the regression of sensory analgesia. intervention: monitor and treat the patient according to clinical practice. theophylline clinical impact: concomitant use of ephedrine may increase the frequency of nausea, nervousness, and insomnia. intervention: monitor patient for worsening symptoms and manage symptoms according to clinical practice. cardiac glycosides clinical impact: giving ephedrine with a cardiac glycoside, such as digitalis, may increase the possibility of arrhythmias. intervention: carefully monitor patients on cardiac glycosides who are also administered ephedrine. interactions that augment pressor effect : clonidine, oxytocin and oxytocic drugs, propofol, monoamine oxidase inhibitors (maois), and atropine. monitor blood pressure. ( 7 ) interactions that antagonize the pressor effect : antagonistic effects with α-adrenergic antagonists, β-adrenergic antagonists, reserpine, quinidine, mephentermine. monitor blood pressure. ( 7 ) guanethidine : ephedrine may inhibit the neuron blockage produced by guanethidine, resulting in loss of antihypertensive effectiveness. monitor blood pressure and adjust the dosage of pressor accordingly. rocuronium : ephedrine may reduce the onset time of neuromuscular blockade when used for intubation with rocuronium if administered simultaneously with anesthetic induction. be aware of this potential interaction. no treatment or other interventions are needed. epidural anesthesia : ephedrine may decrease the efficacy of epidural blockade by hastening the regression of sensory analgesia. monitor and treat the patient according to clinical practice. theophylline : concomitant use of ephedrine may increase the frequency of nausea, nervousness, and insomnia. monitor patient for worsening symptoms and manage symptoms according to clinical practice. cardiac glycosides : giving ephedrine with a cardiac glycoside, such as digitalis, may increase the possibility of arrhythmias. carefully monitor patients on cardiac glycosides who are also administered ephedrine.

Indications and Usage:

1 indications and usage ephedrine sulfate injection is indicated for the treatment of clinically important hypotension occurring in the setting of anesthesia. ephedrine sulfate injection is an alpha- and beta- adrenergic agonist and a norepinephrine-releasing agent that is indicated for the treatment of clinically important hypotension occurring in the setting of anesthesia. ( 1 )

Warnings and Cautions:

5 warnings and precautions pressor effects with concomitant use with oxytocic drugs : pressor effect of sympathomimetic pressor amines is potentiated ( 5.1 ) tachyphylaxis and tolerance : repeated administration of ephedrine may cause tachyphylaxis ( 5.2 ) 5.1 pressor effect with concomitant oxytocic drugs serious postpartum hypertension has been described in patients who received both a vasopressor (i.e., methoxamine, phenylephrine, ephedrine) and an oxytocic (i.e., methylergonovine, ergonovine) [see drug interactions (7) ] . some of these patients experienced a stroke. carefully monitor the blood pressure of individuals who have received both ephedrine and an oxytocic. 5.2 tolerance and tachyphylaxis data indicate that repeated administration of ephedrine can result in tachyphylaxis. clinicians treating anesthesia-induced hypotension with ephedrine sulfate injection should be aware of the possibility of tachyphylaxis and should be prepared with an alternative pressor to mitigate unac
ceptable responsiveness. 5.3 risk of hypertension when used prophylactically when used to prevent hypotension, ephedrine has been associated with an increased incidence of hypertension compared with when ephedrine is used to treat hypotension.

Dosage and Administration:

2 dosage and administration should be administered by trained healthcare providers. ( 2.1 ) ephedrine sulfate injection, 50 mg/ml, must be diluted before administration as an intravenous bolus dose. ( 2.1 ) bolus intravenous injection: 5 mg to 10 mg as needed, not to exceed 50 mg. ( 2.1 ) 2.1 general dosage and administration instructions ephedrine sulfate injection must be diluted before administration as an intravenous bolus to achieve the desired concentration. dilute with normal saline or 5% dextrose in water. inspect parenteral drug products visually for particulate matter and discoloration prior to administration, whenever solution and container permit. discard unused portion. 2.2 dosing for the treatment of clinically important hypotension in the setting of anesthesia ephedrine sulfate injection should be administered by trained healthcare providers. the recommended dosages for the treatment of clinically important hypotension in the setting of anesthesia is an initial dose of 5
mg to 10 mg administered by intravenous bolus. administer additional boluses as needed, not to exceed a total dosage of 50 mg. adjust dosage according to the blood pressure goal (i.e., titrate to effect). 2.3 prepare a 5 mg/ml solution for bolus intravenous administration for bolus intravenous administration, prepare a solution containing a final concentration of 5 mg/ml of ephedrine sulfate injection: withdraw 50 mg (1 ml of 50 mg/ml) of ephedrine sulfate injection and dilute with 9 ml of 5% dextrose injection or 0.9% sodium chloride injection. withdraw an appropriate dose of the 5 mg/ml solution prior to bolus intravenous administration.

Dosage Forms and Strength:

3 dosage forms and strengths ephedrine sulfate injection, usp is a clear, colorless sterile solution and a single-dose 1 ml vial that contains 50 mg/ml ephedrine sulfate usp, equivalent to 38 mg ephedrine base. injection: 50 mg/ml ephedrine sulfate in single-dose vial ( 3 )

Contraindications:

4 contraindications none. none ( 4 )

Adverse Reactions:

6 adverse reactions the following adverse reactions associated with the use of ephedrine sulfate were identified in the literature. because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to estimate their frequency reliably or to establish a causal relationship to drug exposure. gastrointestinal disorders: nausea, vomiting cardiac disorders: tachycardia, palpitations (thumping heart), reactive hypertension, bradycardia, ventricular ectopics, r-r variability nervous system disorders: dizziness psychiatric disorders: restlessness most common adverse reactions during treatment: nausea, vomiting, and tachycardia. (6) to report suspected adverse reactions, contact northstar rx llc at 1-800-206-7821 or fda at 1-800-fda-1088 or www.fda.gov/medwatch.

Drug Interactions:

7 drug interactions interactions that augment the pressor effect oxytocin and oxytocic drugs clinical impact: serious postpartum hypertension has been described in patients who received both a vasopressor (i.e., methoxamine, phenylephrine, ephedrine) and an oxytocic (i.e., methylergonovine, ergonovine). some of these patients experienced a stroke. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and an oxytocic. clonidine, propofol, monoamine oxidase inhibitors (maois), atropine clinical impact: these drugs augment the pressor effect of ephedrine. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and any of these drugs. interactions that antagonize the pressor effect clinical impact: these drugs antagonize the pressor effect of ephedrine. intervention: carefully monitor the blood pressure of individuals who have received both ephedrine and any of these drugs. examples: α-adrenergic ant
agonists, β-adrenergic receptor antagonists, reserpine, quinidine, mephentermine other drug interactions guanethidine clinical impact: ephedrine may inhibit the neuron blockage produced by guanethidine, resulting in loss of antihypertensive effectiveness. intervention: clinician should monitor patient for blood pressor response and adjust the dosage or choice of pressor accordingly. rocuronium clinical impact: ephedrine may reduce the onset time of neuromuscular blockade when used for intubation with rocuronium if administered simultaneously with anesthetic induction. intervention: be aware of this potential interaction. no treatment or other interventions are needed. epidural anesthesia clinical impact: ephedrine may decrease the efficacy of epidural blockade by hastening the regression of sensory analgesia. intervention: monitor and treat the patient according to clinical practice. theophylline clinical impact: concomitant use of ephedrine may increase the frequency of nausea, nervousness, and insomnia. intervention: monitor patient for worsening symptoms and manage symptoms according to clinical practice. cardiac glycosides clinical impact: giving ephedrine with a cardiac glycoside, such as digitalis, may increase the possibility of arrhythmias. intervention: carefully monitor patients on cardiac glycosides who are also administered ephedrine. interactions that augment pressor effect : clonidine, oxytocin and oxytocic drugs, propofol, monoamine oxidase inhibitors (maois), and atropine. monitor blood pressure. ( 7 ) interactions that antagonize the pressor effect : antagonistic effects with α-adrenergic antagonists, β-adrenergic antagonists, reserpine, quinidine, mephentermine. monitor blood pressure. ( 7 ) guanethidine : ephedrine may inhibit the neuron blockage produced by guanethidine, resulting in loss of antihypertensive effectiveness. monitor blood pressure and adjust the dosage of pressor accordingly. rocuronium : ephedrine may reduce the onset time of neuromuscular blockade when used for intubation with rocuronium if administered simultaneously with anesthetic induction. be aware of this potential interaction. no treatment or other interventions are needed. epidural anesthesia : ephedrine may decrease the efficacy of epidural blockade by hastening the regression of sensory analgesia. monitor and treat the patient according to clinical practice. theophylline : concomitant use of ephedrine may increase the frequency of nausea, nervousness, and insomnia. monitor patient for worsening symptoms and manage symptoms according to clinical practice. cardiac glycosides : giving ephedrine with a cardiac glycoside, such as digitalis, may increase the possibility of arrhythmias. carefully monitor patients on cardiac glycosides who are also administered ephedrine.

Use in Specific Population:

8 use in specific populations 8.1 pregnancy risk summary available data from randomized studies, case series, and reports of ephedrine sulfate use in pregnant women have not identified a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. however, there are clinical considerations due to underlying conditions (see clinical considerations) . in animal reproduction studies, decreased fetal survival and fetal body weights were observed in the presence of maternal toxicity after normotensive pregnant rats were administered 60 mg/kg intravenous ephedrine sulfate (12 times the maximum recommended human dose (mrhd) of 50 mg/day). no malformations or embryofetal adverse effects were observed when pregnant rats or rabbits were treated with intravenous bolus doses of ephedrine sulfate during organogenesis at doses 1.9 and 7.7 times the mrhd, respectively [see data] . the estimated background risk of major birth defects and miscarriage for the indicate
d population are unknown. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations disease-associated maternal and/or embryofetal risk untreated hypotension associated with spinal anesthesia for cesarean section is associated with an increase in maternal nausea and vomiting. a decrease in uterine blood flow due to maternal hypotension may result in fetal bradycardia and acidosis. fetal/neonatal adverse reactions cases of potential metabolic acidosis in newborns at delivery with maternal ephedrine exposure have been reported in the literature. these reports describe umbilical artery ph of ≤7.2 at the time of delivery [see clinical pharmacology 12.3 ] . monitoring of the newborn for signs and symptoms of metabolic acidosis may be required. monitoring of infant’s acid-base status is warranted to ensure that an episode of acidosis is acute and reversible. data animal data decreased fetal body weights were observed when pregnant rats were administered intravenous bolus doses of 60 mg/kg ephedrine sulfate (12 times the maximum recommended human dose (mrhd) of 50 mg based on body surface area) from gestation day 6 to 17. this dose was associated with evidence of maternal toxicity (decreased body weight of dams and abnormal head movements). no malformations or fetal deaths were noted at this dose. no effects on fetal body weight were noted at 10 mg/kg (1.9 times the mrhd of 50 mg). no evidence of malformations or embryo-fetal toxicity were noted in pregnant rabbits administered intravenous bolus doses up to 20 mg/kg ephedrine sulfate (7.7 times the maximum recommended human dose (mrhd) of 50 mg based on body surface area) from gestation day 6 to 20. this dose was associated with expected pharmacological maternal effects (increased respiration rate, dilated pupils, piloerection). decreased fetal survival and body weights in the presence of maternal toxicity (increased mortality) were noted when pregnant dams were administered intravenous bolus doses of 60 mg/kg epinephrine sulfate (approximately 12 times the mrhd based on body surface area) from gd 6 through lactation day 20. no adverse effects were noted at 10 mg/kg (1.9 times the mrhd). 8.2 lactation risk summary a single published case report indicates that ephedrine is present in human milk. however, no information is available on the effects of the drug on the breastfed infant or the effects of the drug on milk production. the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for ephedrine sulfate injection and any potential adverse effects on the breastfed child from ephedrine sulfate injection or from the underlying maternal condition. 8.4 pediatric use the safety and effectiveness of ephedrine sulfate in pediatric patients have not been established. animal toxicity data in a study in which juvenile rats were administered intravenous bolus doses of 2, 10, or 60 mg/kg ephedrine sulfate daily from postnatal day 35 to 56, an increased incidence of mortality was noted at the high dose of 60 mg/kg. the no-adverse-effect level was 10 mg/kg (approximately 1.9 times a maximum daily dose of 50 mg in a 60 kg person based on body surface area). 8.5 geriatric use clinical studies of ephedrine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. this drug is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. 8.6 renal impairment ephedrine and its metabolite are excreted in urine. in patients with renal impairment, excretion of ephedrine is likely to be affected with a corresponding increase in elimination half-life, which will lead to slow elimination of ephedrine and consequently prolonged pharmacological effect and potentially adverse reactions. monitor patients with renal impairment carefully after the initial bolus dose for adverse events.

Use in Pregnancy:

8.1 pregnancy risk summary available data from randomized studies, case series, and reports of ephedrine sulfate use in pregnant women have not identified a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. however, there are clinical considerations due to underlying conditions (see clinical considerations) . in animal reproduction studies, decreased fetal survival and fetal body weights were observed in the presence of maternal toxicity after normotensive pregnant rats were administered 60 mg/kg intravenous ephedrine sulfate (12 times the maximum recommended human dose (mrhd) of 50 mg/day). no malformations or embryofetal adverse effects were observed when pregnant rats or rabbits were treated with intravenous bolus doses of ephedrine sulfate during organogenesis at doses 1.9 and 7.7 times the mrhd, respectively [see data] . the estimated background risk of major birth defects and miscarriage for the indicated population are unknown. all
pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations disease-associated maternal and/or embryofetal risk untreated hypotension associated with spinal anesthesia for cesarean section is associated with an increase in maternal nausea and vomiting. a decrease in uterine blood flow due to maternal hypotension may result in fetal bradycardia and acidosis. fetal/neonatal adverse reactions cases of potential metabolic acidosis in newborns at delivery with maternal ephedrine exposure have been reported in the literature. these reports describe umbilical artery ph of ≤7.2 at the time of delivery [see clinical pharmacology 12.3 ] . monitoring of the newborn for signs and symptoms of metabolic acidosis may be required. monitoring of infant’s acid-base status is warranted to ensure that an episode of acidosis is acute and reversible. data animal data decreased fetal body weights were observed when pregnant rats were administered intravenous bolus doses of 60 mg/kg ephedrine sulfate (12 times the maximum recommended human dose (mrhd) of 50 mg based on body surface area) from gestation day 6 to 17. this dose was associated with evidence of maternal toxicity (decreased body weight of dams and abnormal head movements). no malformations or fetal deaths were noted at this dose. no effects on fetal body weight were noted at 10 mg/kg (1.9 times the mrhd of 50 mg). no evidence of malformations or embryo-fetal toxicity were noted in pregnant rabbits administered intravenous bolus doses up to 20 mg/kg ephedrine sulfate (7.7 times the maximum recommended human dose (mrhd) of 50 mg based on body surface area) from gestation day 6 to 20. this dose was associated with expected pharmacological maternal effects (increased respiration rate, dilated pupils, piloerection). decreased fetal survival and body weights in the presence of maternal toxicity (increased mortality) were noted when pregnant dams were administered intravenous bolus doses of 60 mg/kg epinephrine sulfate (approximately 12 times the mrhd based on body surface area) from gd 6 through lactation day 20. no adverse effects were noted at 10 mg/kg (1.9 times the mrhd).

Pediatric Use:

8.4 pediatric use the safety and effectiveness of ephedrine sulfate in pediatric patients have not been established. animal toxicity data in a study in which juvenile rats were administered intravenous bolus doses of 2, 10, or 60 mg/kg ephedrine sulfate daily from postnatal day 35 to 56, an increased incidence of mortality was noted at the high dose of 60 mg/kg. the no-adverse-effect level was 10 mg/kg (approximately 1.9 times a maximum daily dose of 50 mg in a 60 kg person based on body surface area).

Geriatric Use:

8.5 geriatric use clinical studies of ephedrine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. this drug is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Overdosage:

10 overdosage overdose of ephedrine can cause a rapid rise in blood pressure. in the case of an overdose, careful monitoring of blood pressure is recommended. if blood pressure continues to rise to an unacceptable level, parenteral antihypertensive agents can be administered at the discretion of the clinician.

Description:

11 description ephedrine is an alpha- and beta-adrenergic agonist and a norepinephrine-releasing agent. ephedrine sulfate injection, usp is a clear, colorless, sterile solution for intravenous injection. it must be diluted before intravenous administration. the chemical name of ephedrine sulfate is (1r,2s)-(-)-2-methylamine-1-phenylpropan-1-ol sulfate, and the molecular weight is 428.5 g/mol. its molecular formula is (c 10 h 15 no) 2 .h 2 so 4 and structural formula is depicted below: ephedrine sulfate, usp is a white to off-white powder; it is freely soluble in water and slightly soluble in alcohol. each ml contains ephedrine sulfate, usp 50 mg (equivalent to 38 mg ephedrine base) in water for injection. the ph is adjusted with sodium hydroxide and/or glacial acetic acid if necessary. the ph range is 4.5 to 7.0. ab

Clinical Pharmacology:

12 clinical pharmacology 12.1 mechanism of action ephedrine sulfate is a sympathomimetic amine that directly acts as an agonist at α- and ß-adrenergic receptors and indirectly causes the release of norepinephrine from sympathetic neurons. pressor effects by direct alpha- and beta-adrenergic receptor activation are mediated by increases in arterial pressures, cardiac output, and peripheral resistance. indirect adrenergic stimulation is caused by norepinephrine release from sympathetic nerves. 12.2 pharmacodynamics ephedrine stimulates heart rate and cardiac output and variably increases peripheral resistance; as a result, ephedrine usually increases blood pressure. stimulation of the α-adrenergic receptors of smooth muscle cells in the bladder base may increase the resistance to the outflow of urine. activation of ß-adrenergic receptors in the lungs promotes bronchodilation. the overall cardiovascular effect from ephedrine is the result of a balance among α-1 adrenoceptor
-mediated vasoconstriction, ß-2 adrenoceptor-mediated vasoconstriction, and ß-2 adrenoceptor-mediated vasodilatation. stimulation of the ß-1 adrenoceptors results in positive inotrope and chronotrope action. tachyphylaxis to the pressor effects of ephedrine may occur with repeated administration [see warnings and precautions (5.2) ] . 12.3 pharmacokinetics publications studying pharmacokinetics of oral administration of (-)-ephedrine support that (-)-ephedrine is metabolized into norephedrine. however, the metabolism pathway is unknown. both the parent drug and the metabolite are excreted in urine. limited data after intravenous administration of ephedrine support similar observations of urinary excretion of drug and metabolite. the plasma elimination half-life of ephedrine following oral administration was about 6 hours. ephedrine crosses the placental barrier [see use in specific populations (8.1) ] .

Mechanism of Action:

12.1 mechanism of action ephedrine sulfate is a sympathomimetic amine that directly acts as an agonist at α- and ß-adrenergic receptors and indirectly causes the release of norepinephrine from sympathetic neurons. pressor effects by direct alpha- and beta-adrenergic receptor activation are mediated by increases in arterial pressures, cardiac output, and peripheral resistance. indirect adrenergic stimulation is caused by norepinephrine release from sympathetic nerves.

Pharmacodynamics:

12.2 pharmacodynamics ephedrine stimulates heart rate and cardiac output and variably increases peripheral resistance; as a result, ephedrine usually increases blood pressure. stimulation of the α-adrenergic receptors of smooth muscle cells in the bladder base may increase the resistance to the outflow of urine. activation of ß-adrenergic receptors in the lungs promotes bronchodilation. the overall cardiovascular effect from ephedrine is the result of a balance among α-1 adrenoceptor-mediated vasoconstriction, ß-2 adrenoceptor-mediated vasoconstriction, and ß-2 adrenoceptor-mediated vasodilatation. stimulation of the ß-1 adrenoceptors results in positive inotrope and chronotrope action. tachyphylaxis to the pressor effects of ephedrine may occur with repeated administration [see warnings and precautions (5.2) ] .

Pharmacokinetics:

12.3 pharmacokinetics publications studying pharmacokinetics of oral administration of (-)-ephedrine support that (-)-ephedrine is metabolized into norephedrine. however, the metabolism pathway is unknown. both the parent drug and the metabolite are excreted in urine. limited data after intravenous administration of ephedrine support similar observations of urinary excretion of drug and metabolite. the plasma elimination half-life of ephedrine following oral administration was about 6 hours. ephedrine crosses the placental barrier [see use in specific populations (8.1) ] .

Nonclinical Toxicology:

13 nonclinical toxicology 13.1 carcinogenesis and mutagenesis and impairment of fertility carcinogenesis: two-year feeding studies in rats and mice conducted under the national toxicology program (ntp) demonstrated no evidence of carcinogenic potential with ephedrine sulfate at doses up to 10 mg/kg/day and 27 mg/kg/day (approximately 2 times and 3 times the maximum human recommended dose on a mg/m 2 basis, respectively). mutagenesis: ephedrine sulfate tested negative in the in vitro bacterial reverse mutation assay, the in vitro mouse lymphoma assay, the in vitro sister chromatid exchange, the in vitro chromosomal aberration assay, and the in vivo rat bone marrow micronucleus assay. impairment of fertility: there was no impact on fertility or early embryonic development in a study in which male rats were administered intravenous bolus doses of 0, 2, 10, or 60 mg/kg ephedrine sulfate (up to 12 times the maximum recommended human dose of 50 mg based on body surface area) for 28 days prio
r to mating and through gestation and females were treated for 14 days prior to mating through gestation day 7.

Carcinogenesis and Mutagenesis and Impairment of Fertility:

13.1 carcinogenesis and mutagenesis and impairment of fertility carcinogenesis: two-year feeding studies in rats and mice conducted under the national toxicology program (ntp) demonstrated no evidence of carcinogenic potential with ephedrine sulfate at doses up to 10 mg/kg/day and 27 mg/kg/day (approximately 2 times and 3 times the maximum human recommended dose on a mg/m 2 basis, respectively). mutagenesis: ephedrine sulfate tested negative in the in vitro bacterial reverse mutation assay, the in vitro mouse lymphoma assay, the in vitro sister chromatid exchange, the in vitro chromosomal aberration assay, and the in vivo rat bone marrow micronucleus assay. impairment of fertility: there was no impact on fertility or early embryonic development in a study in which male rats were administered intravenous bolus doses of 0, 2, 10, or 60 mg/kg ephedrine sulfate (up to 12 times the maximum recommended human dose of 50 mg based on body surface area) for 28 days prior to mating and through ge
station and females were treated for 14 days prior to mating through gestation day 7.

Clinical Studies:

14 clinical studies the evidence for the efficacy of ephedrine injection is derived from the published literature. increases in blood pressure following administration of ephedrine were observed in 14 studies, including 9 where ephedrine was used in pregnant women undergoing neuraxial anesthesia during cesarean delivery, 1 study in non-obstetric surgery under neuraxial anesthesia, and 4 studies in patients undergoing surgery under general anesthesia. ephedrine has been shown to raise systolic and mean blood pressure when administered as a bolus dose following the development of hypotension during anesthesia.

How Supplied:

16 how supplied/storage and handling ephedrine sulfate injection usp, 50 mg/ml is a clear, colorless sterile solution and supplied in 1 ml single-dose glass vials. each ml contains 50 mg of ephedrine sulfate usp, equivalent to 38 mg ephedrine base. it is available as follows: 50 mg/ml (1 ml) 1 ml single-dose vial: ndc 16714-037-01 10 vials in a carton: ndc 16714-037-10 25 vials in a carton: ndc 16714-037-25 vial stoppers are not manufactured with natural rubber latex. store ephedrine sulfate injection usp, 50 mg/ml, at 20° to 25°c (68° to 77°f); excursions permitted between 15° to 30°c (59° to 86°f) [see usp controlled room temperature]. store in carton until time of use. for single-dose only. discard unused portion. manufactured for: northstar rx llc memphis, tn 38141. manufactured by: amneal pharmaceuticals pvt. ltd parenteral unit ahmedabad 382213, india iss. 11-2021-01

Package Label Principal Display Panel:

Principal display panel 1 1 1


Comments/ Reviews:

* Data of this site is collected from www.fda.gov. This page is for informational purposes only. Always consult your physician with any questions you may have regarding a medical condition.