Product Elements:
Qtern dapagliflozin and saxagliptin dapagliflozin dapagliflozin saxagliptin hydrochloride saxagliptin anhydrous anhydrous lactose croscarmellose sodium ferrous oxide magnesium stearate microcrystalline cellulose polyvinyl alcohol, unspecified polyethylene glycol 400 silicon dioxide talc titanium dioxide biconvex 5;10;1122 qtern dapagliflozin and saxagliptin dapagliflozin dapagliflozin saxagliptin hydrochloride saxagliptin anhydrous anhydrous lactose croscarmellose sodium ferrous oxide magnesium stearate microcrystalline cellulose polyvinyl alcohol, unspecified polyethylene glycol 400 silicon dioxide talc titanium dioxide light reddish biconvex 5;5;1120
Drug Interactions:
7 drug interactions table 2: clinically relevant interactions with qtern strong inhibitors of cyp3a4/5 enzymes clinical impact ketoconazole significantly increased saxagliptin exposure. similar significant increases in plasma concentrations of saxagliptin are anticipated with other strong cyp3a4/5 inhibitors (e.g., atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, ritonavir, saquinavir, and telithromycin). intervention do not coadminister qtern with strong cytochrome p450 3a4/5 inhibitors [see dosage and administration (2.4 ) and clinical pharmacology (12.3) ] . insulin or insulin secretagogues clinical impact the risk of hypoglycemia may be increased when qtern is used concomitantly with insulin or insulin secretagogues (e.g., sulfonylurea) [see warnings and precuations (5.6) ] . intervention concomitant use may require lower doses of insulin or the insulin secretagogue to reduce the risk of hypoglycemia. lithium clinical impact concomitant use of an sglt2 i
Read more...nhibitor with lithium may decrease serum lithium concentrations. intervention monitor serum lithium concentration more frequently during qtern initiation and dosage changes. positive urine glucose test clinical impact sglt2 inhibitors increase urinary glucose excretion and will lead to positive urine glucose tests. intervention monitoring glycemic control with urine glucose tests is not recommended in patients taking sglt2 inhibitors. use alternative methods to monitor glycemic control. interference with 1,5âanhydroglucitol (1,5âag) assay clinical impact measurements of 1,5âag are unreliable in assessing glycemic control in patients taking sglt2 inhibitors. intervention monitoring glycemic control with 1,5âag assay is not recommended. use alternative methods to monitor glycemic control. ⢠strong cyp3a4/5 inhibitors (e.g., ketoconazole): do not coadminister qtern with strong cytochrome p450 3a4/5 inhibitors. ( 2.4 , 7) ⢠see full prescribing information for additional drug interactions and information on interference of qtern with laboratory tests. ( 7 )
Indications and Usage:
1 indications and usage qtern is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. limitations of use qtern is not recommended for patients with type 1 diabetes mellitus. it may increase the risk of diabetic ketoacidosis in these patients [see warnings and precautions (5.3) ] . qtern is a combination of dapagliflozin, a sodium-glucose cotransporter 2 (sglt2) inhibitor and saxagliptin, a dipeptidyl peptidase-4 (dpp-4) inhibitor indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. (1) limitations of use : not for treatment of type 1 diabetes mellitus. it may increase the risk of diabetic ketoacidosis in these patients. ( 1 , 5.3 )
Warnings and Cautions:
5 warnings and precautions ⢠pancreatitis: if pancreatitis is suspected, promptly discontinue qtern. (5.1 , 6.2) ⢠heart failure: consider risks and benefits of qtern in patients who have known risk factors for heart failure. monitor patients for signs and symptoms. (5.2) ⢠ketoacidosis: assess patients who present with signs and symptoms of metabolic acidosis for ketoacidosis regardless of blood glucose level. if suspected, discontinue qtern, evaluate and treat promptly. before initiating qtern, consider risk factors for ketoacidosis. patients on qtern may require monitoring and temporary discontinuation of therapy in clinical situations known to predispose to ketoacidosis. ( 5.3 , 6.2) ⢠volume depletion: before initiating qtern, assess volume status and renal function in the elderly, patients with renal impairment or low systolic blood pressure, and in patients on diuretics. monitor for signs and symptoms during therapy. ( 5.4 , 6.1 ) ⢠urosepsis and pyelone
Read more...phritis: evaluate for signs and symptoms of urinary tract infections and treat promptly, if indicated. ( 5.5 , 6.2) ⢠hypoglycemia: consider lowering the dose of insulin secretagogue or insulin to reduce the risk of hypoglycemia when initiating qtern. ( 5.6 , 6.1) ⢠necrotizing fasciitis of the perineum (fournierâs gangrene): serious, life-threatening cases have occurred in both females and males. assess patients presenting with pain or tenderness, erythema, or swelling in the genital or perineal area, along with fever or malaise. if suspected, institute prompt treatment. (5.7) ⢠hypersensitivity reactions: there have been postmarketing reports of serious hypersensitivity reactions in patients treated with saxagliptin, such as anaphylaxis, angioedema, and exfoliative skin conditions. promptly discontinue qtern, assess for other potential causes, institute appropriate monitoring and treatment, and initiate alternative treatment for diabetes. ( 5.8 , 6.2) ⢠genital mycotic infections: monitor and treat if indicated. ( 5.9 , 6.1) ⢠arthralgia: severe and disabling arthralgia has been reported in patients taking dpp-4 inhibitors. consider as a possible cause for severe joint pain and discontinue qtern if appropriate. ( 5.10 , 6.1 , 6.2) ⢠bullous pemphigoid: there have been postmarketing reports of bullous pemphigoid requiring hospitalization in patients taking dpp-4 inhibitors. tell patients to report development of blisters or erosions. if bullous pemphigoid is suspected, discontinue qtern. ( 5.11 ) 5.1 pancreatitis there have been postmarketing reports of acute pancreatitis in patients taking saxagliptin. in a cardiovascular outcomes trial enrolling participants with established atherosclerotic cardiovascular disease (ascvd) or multiple risk factors for ascvd (savor trial), cases of definite acute pancreatitis were confirmed in 17 of 8240 (0.2%) patients receiving saxagliptin compared to 9 of 8173 (0.1%) receiving placebo. pre-existing risk factors for pancreatitis were identified in 88% (15/17) of those patients receiving saxagliptin and in 100% (9/9) of those patients receiving placebo. after initiation of qtern, observe patients for signs and symptoms of pancreatitis. if pancreatitis is suspected, promptly discontinue qtern and initiate appropriate management. it is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using qtern. 5.2 heart failure in a cardiovascular outcomes trial enrolling participants with established ascvd or multiple risk factors for ascvd (savor trial), more patients randomized to saxagliptin (289/8280, 3.5%) were hospitalized for heart failure compared to patients randomized to placebo (228/8212, 2.8%). in a time-to-first-event analysis the risk of hospitalization for heart failure was higher in the saxagliptin group (estimated hazard ratio: 1.27; 95% ci: 1.07, 1.51). subjects with a prior history of heart failure and subjects with renal impairment had a higher risk for hospitalization for heart failure, irrespective of treatment assignment. consider the risks and benefits of qtern prior to initiating treatment in patients at a higher risk of heart failure. observe patients for signs and symptoms of heart failure during therapy. advise patients of the characteristic symptoms of heart failure and to immediately report such symptoms. if heart failure develops, evaluate and manage according to current standards of care and consider discontinuation of qtern. 5.3 ketoacidosis reports of ketoacidosis, a serious life-threatening condition requiring urgent hospitalization, have been identified in patients with type 1 and type 2 diabetes mellitus receiving sodium glucose cotransporter-2 (sglt2) inhibitors, including dapagliflozin [see adverse reactions (6.1) ] . in placebo-controlled trials of patients with type 1 diabetes mellitus, the risk of ketoacidosis was increased in patients who received sglt2 inhibitors compared to patients who received placebo. fatal cases of ketoacidosis have been reported in patients taking dapagliflozin. qtern is not indicated for the treatment of patients with type 1 diabetes mellitus [see indications and usage (1) ] . patients treated with qtern who present with signs and symptoms consistent with severe metabolic acidosis should be assessed for ketoacidosis regardless of presenting blood glucose levels as ketoacidosis associated with qtern may be present even if blood glucose levels are less than 250 mg/dl. if ketoacidosis is suspected, qtern should be discontinued, the patient should be evaluated and prompt treatment should be instituted. treatment of ketoacidosis may require insulin, fluid, and carbohydrate replacement. in many of the postmarketing reports for dapagliflozin, and particularly in patients with type 1 diabetes, the presence of ketoacidosis was not immediately recognized, and the institution of treatment was delayed because the presenting blood glucose levels were below those typically expected for diabetic ketoacidosis (often less than 250 mg/dl). signs and symptoms at presentation were consistent with dehydration and severe metabolic acidosis and included nausea, vomiting, abdominal pain, generalized malaise, and shortness of breath. in some but not all cases, factors predisposing to ketoacidosis, such as insulin dose reduction, acute febrile illness, reduced caloric intake, surgery, pancreatic disorders suggesting insulin deficiency (e.g., type 1 diabetes, history of pancreatitis or pancreatic surgery), and alcohol abuse were identified. before initiating qtern, consider factors in the patient history that may predispose to ketoacidosis including pancreatic insulin deficiency from any cause, caloric restriction, and alcohol abuse. for patients who undergo elective surgery, consider temporarily discontinuing qtern for at least 3 days prior to surgery [see clinical pharmacology (12.2 , 12.3) ]. consider monitoring for ketoacidosis and temporarily discontinuing qtern in other clinical situations known to predispose to ketoacidosis (e.g., prolonged fasting due to acute illness or post-surgery) [see adverse reactions (6.2) ] . ensure risk factors for ketoacidosis are resolved prior to restarting qtern. educate patients on the signs and symptoms of ketoacidosis and instruct patients to discontinue qtern and seek medical attention immediately if signs and symptoms occur. 5.4 volume depletion dapagliflozin can cause intravascular volume depletion which may sometimes manifest as symptomatic hypotension or acute transient changes in creatinine. there have been postmarketing reports of acute kidney injury, some requiring hospitalization and dialysis, in patients with type 2 diabetes mellitus receiving sglt2 inhibitors, including dapagliflozin. patients with impaired renal function (egfr <60 ml/min/1.73 m 2 ), elderly patients, or patients on loop diuretics may be at increased risk for volume depletion or hypotension. before initiating qtern in patients with one or more of these characteristics, assess volume status and renal function. qtern is contraindicated in patients with an egfr <45 ml/min/1.73 m 2 . monitor for signs and symptoms of hypotension, and renal function after initiating therapy. 5.5 urosepsis and pyelonephritis serious urinary tract infections including urosepsis and pyelonephritis requiring hospitalization have been reported in patients receiving sglt2 inhibitors, including dapagliflozin. treatment with sglt2 inhibitors increases the risk for urinary tract infections. evaluate patients for signs and symptoms of urinary tract infections and treat promptly, if indicated [see adverse reactions (6.2) ] . 5.6 hypoglycemia with concomitant use of insulin or insulin secretagogues insulin and insulin secretagogues, such as sulfonylureas, are known to cause hypoglycemia. both dapagliflozin and saxagliptin can individually increase the risk of hypoglycemia when combined with insulin or an insulin secretagogue. therefore, a lower dose of insulin or insulin secretagogue may be required to reduce the risk of hypoglycemia when these agents are used in combination with qtern [see adverse reactions (6.1) ] . 5.7 necrotizing fasciitis of the perineum (fournierâs gangrene) reports of necrotizing fasciitis of the perineum (fournierâs gangrene), a rare but serious and life-threatening necrotizing infection requiring urgent surgical intervention, have been identified in postmarketing surveillance in patients with diabetes mellitus receiving sglt2 inhibitors, including dapagliflozin. cases have been reported in both females and males. serious outcomes have included hospitalization, multiple surgeries, and death. patients treated with qtern presenting with pain or tenderness, erythema, or swelling in the genital or perineal area, along with fever or malaise, should be assessed for necrotizing fasciitis. if suspected, start treatment immediately with broad-spectrum antibiotics and, if necessary, surgical debridement. discontinue qtern, closely monitor blood glucose levels, and provide appropriate alternative therapy for glycemic control. 5.8 hypersensitivity reactions there have been postmarketing reports of serious hypersensitivity reactions in patients treated with saxagliptin. these reactions include anaphylactic reactions, angioedema, and exfoliative skin conditions. onset of these reactions occurred within the first 3 months after initiation of treatment with saxagliptin, with some reports occurring after the first dose. if a serious hypersensitivity reaction is suspected, discontinue qtern, treat per standard of care, and monitor until signs and symptoms are resolved. assess for other potential causes for the event. institute alternative treatment for diabetes. use caution in a patient with a history of angioedema to another dipeptidyl peptidase-4 (dpp-4) inhibitor because it is unknown whether such patients will be predisposed to angioedema with saxagliptin. 5.9 genital mycotic infections dapagliflozin increases the risks of genital mycotic infections. patients with a history of genital mycotic infections were more likely to develop genital mycotic infections [see adverse reactions (6.1) ] . monitor and treat appropriately. 5.10 severe and disabling arthralgia there have been postmarketing reports of severe and disabling arthralgia in patients taking dpp-4 inhibitors. the time to onset of symptoms following initiation of drug therapy varied from one day to years. patients experienced relief of symptoms upon discontinuation of the medication. a subset of patients experienced a recurrence of symptoms restarting the same drug or a different dpp-4 inhibitor. consider dpp-4 inhibitors as a possible cause for severe joint pain and discontinue drug if appropriate [see adverse reactions (6) ] . 5.11 bullous pemphigoid postmarketing cases of bullous pemphigoid requiring hospitalization have been reported with dpp-4 inhibitor use. in reported cases, patients typically recovered with topical or systemic immunosuppressive treatment and discontinuation of the dpp-4 inhibitor. tell patients to report development of blisters or erosions while receiving qtern. if bullous pemphigoid is suspected, qtern should be discontinued and referral to a dermatologist should be considered for diagnosis and appropriate treatment.
Dosage and Administration:
2 dosage and administration ⢠assess renal function before initiation of therapy and periodically thereafter. (2.1) ⢠take orally, once daily in the morning with or without food. (2.2) ⢠for patients not already taking dapagliflozin, the recommended starting dose of qtern is a 5 mg dapagliflozin/5 mg saxagliptin tablet once daily. (2.2) ⢠in patients tolerating 5 mg dapagliflozin and 5 mg saxagliptin once daily who require additional glycemic control, the qtern dose can be increased to 10 mg dapagliflozin/5 mg saxagliptin tablet once daily. (2.2) ⢠swallow tablet whole. do not crush, cut or chew. (2.2) 2.1 prior to initiation of qtern assess renal function prior to initiation of qtern therapy and periodically thereafter [see warnings and precautions (5.4) ] . assess volume status and, if necessary, correct volume depletion prior to initiation of qtern [see warnings and precautions (5.4) and use in specific populations (8.5, 8.6) ] . 2.2 dosage for patients not
Read more...already taking dapagliflozin, the recommended starting dose of qtern is a 5 mg dapagliflozin/5 mg saxagliptin tablet taken orally once daily in the morning with or without food. in patients tolerating 5 mg dapagliflozin and 5 mg saxagliptin once daily who require additional glycemic control, the qtern dose can be increased to 10 mg dapagliflozin/5 mg saxagliptin tablet once daily in the morning with or without food. swallow whole. do not crush, cut or chew qtern tablets. 2.3 patients with renal impairment no dose adjustment is needed in patients with an estimated glomerular filtration rate (egfr) greater than or equal to 45 ml/min/1.73 m 2 . qtern is contraindicated in patients with an egfr less than 45 ml/min/1.73 m 2 [ see contraindications (4) and use in specific populations (8.6) ] . 2.4 use with strong cyp3a4/5 inhibitors do not coadminister qtern with strong cytochrome p450 3a4/5 inhibitors (e.g., ketoconazole, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, ritonavir, saquinavir, and telithromycin) [see drug interactions (7) ].
Dosage Forms and Strength:
3 dosage forms and strengths qtern (dapagliflozin and saxagliptin) tablets are available as follows: dapagliflozin strength saxagliptin strength color/shape tablet markings 5 mg 5 mg light purple to reddish purple, biconvex, round, filmâcoated tablet â1120â printed on both sides, in blue ink 10 mg 5 mg light brown to brown, biconvex, round, filmâcoated tablet â1122â printed on both sides, in blue ink tablets: ⢠5 mg dapagliflozin/5 mg saxagliptin (3) ⢠10 mg dapagliflozin/5 mg saxagliptin (3)
Contraindications:
4 contraindications qtern is contraindicated in patients with: ⢠history of a serious hypersensitivity reaction to dapagliflozin or to saxagliptin, including anaphylactic reactions, angioedema or exfoliative skin conditions [see warnings and precautions (5.8) and adverse reactions (6.2) ] . ⢠moderate to severe renal impairment (egfr less than 45 ml/min/1.73 m 2 ), end-stage renal disease (esrd), or patients on dialysis [see use in specific populations (8.6) ] . ⢠history of a serious hypersensitivity reaction to dapagliflozin or to saxagliptin. (4 , 5.8 , 6.2) ⢠moderate to severe renal impairment (egfr <45 ml/min/1.73 m 2 ), end-stage renal disease, or patients on dialysis. (4)
Adverse Reactions:
6 adverse reactions the following important adverse reactions are described below or elsewhere in the labeling: ⢠pancreatitis [see warnings and precautions (5.1) ] ⢠heart failure [see warnings and precautions (5.2) ] ⢠ketoacidosis [see warnings and precautions (5.3) ] ⢠volume depletion [see warnings and precautions (5.4) ] ⢠urosepsis and pyelonephritis [see warnings and precautions (5.5) ] ⢠hypoglycemia with concomitant use of insulin or insulin secretagogues [see warnings and precautions (5.6) ] ⢠necrotizing fasciitis of the perineum (fournierâs gangrene) [see warnings and precautions (5.7) ] ⢠hypersensitivity reactions [see warnings and precautions (5.8) ] ⢠genital mycotic infections [see warnings and precautions (5.9) ] ⢠severe and disabling arthralgia [see warnings and precautions (5.10) ] ⢠bullous pemphigoid [see warnings and precautions (5.11) ] adverse reactions reported in â¥5% of subjects treated with d
Read more...apagliflozin and saxagliptin were upper respiratory tract infection, urinary tract infection, and dyslipidemia. (6.1) to report suspected adverse reactions, contact astrazeneca at 1-800-236-9933 or fda at 1-800-fda-1088 or www.fda.gov/medwatch. 6.1 clinical trials experience because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. the safety of combined use of 10 mg dapagliflozin and 5 mg saxagliptin has been evaluated in adult subjects with type 2 diabetes mellitus in a pooled safety analysis of three phase 3 active/placebo-controlled clinical trials with a median exposure of 51 weeks. the pooled safety analysis included a total of 1169 adults: 492 patients in the combination of saxagliptin and dapagliflozin plus metformin group, 341 patients in the dapagliflozin plus metformin group, 336 patients in the saxagliptin plus metformin group. the mean age of these subjects was 54 years, 0.8% were 75 years or older and 53.7% were female. the population was 80.9% white, 8.3% black or african american, 3.7% asian, and 6.6% other race. at baseline the population had diabetes for an average of 7.5 years and a mean hba1c of 8.4%. the mean egfr at baseline was 94.4 ml/min/1.73 m 2 . the common adverse reactions were based on the pooled analyses of these studies as shown in table 1. table 1: adverse reactions reported in â¥2% of subjects treated with 10 mg dapagliflozin and 5 mg saxagliptin plus metformin (â¥1500 mg) adverse reaction preferred term adverse reactions that are medically related were grouped to a single preferred term. frequency % upper respiratory tract infection 13.6 urinary tract infection 5.7 dyslipidemia 5.1 headache 4.3 diarrhea 3.7 back pain 3.3 genital infection 3.0 arthralgia 2.4 additionally, adverse reactions reported in <5% and â¥2% from the dapagliflozin development program and â¥1% more frequently compared to placebo included increased urination and discomfort with urination. hypoglycemia in the pooled analysis, the incidences of hypoglycemia (defined as a blood glucose <54 mg/dl regardless of the presence or absence of symptoms) and severe hypoglycemia (event requiring assistance due to neuroglycopenia, characterized by altered mental and/or physical status) was 1% and 0.2%, respectively. genital mycotic infections genital mycotic infections were reported in 15 subjects (3%) treated with qtern. reported adverse reactions by frequency included vulvovaginal mycotic infection, balanoposthitis, genital fungal infection, vaginal infection, and vulvovaginitis. the majority of subjects (84.2%) who experienced genital infection adverse reactions were females. urinary tract infections urinary tract infections were reported in 28 subjects (5.7%) treated with qtern. reported adverse reactions by frequency included urinary tract infection, escherichia urinary tract infection, prostatitis, and pyelonephritis. the majority of subjects (80.6%) who experienced urinary tract infection adverse reactions were females. volume depletion dapagliflozin causes an osmotic diuresis, which may lead to a reduction in intravascular volume. events related to volume depletion (hypotension, dehydration, and hypovolemia) were reported in 2 subjects (0.4%) treated with qtern plus metformin. impairment of renal function adverse reactions related to decreased renal function were reported in 10 subjects (2.0%) treated with qtern plus metformin. the reported adverse reactions included decreased glomerular filtration rate, renal impairment, increased blood creatinine, acute renal failure, and decreased urine output. none of the adverse reactions were reported as serious and all but one were mild to moderate in intensity. three subjects discontinued due to decreased egfr. subjects with aes of renal impairment had lower mean egfr values at baseline of 64.4 ml/min/1.73 m 2 compared to 94.4 ml/min/1.73 m 2 in overall population treated with qtern. ketoacidosis dapagliflozin in the cardiovascular outcome study with dapagliflozin in patients with type 2 diabetes mellitus, events of diabetic ketoacidosis were reported in 27 out of 8574 patients in the dapagliflozin-treated group and in 12 out of 8569 patients in the placebo group. the events were evenly distributed over the study period. laboratory findings increases in serum creatinine and decreases in egfr dapagliflozin initiation of sglt2 inhibitors, including dapagliflozin causes a small increase in serum creatinine and decrease in egfr. these changes in serum creatinine and egfr generally occur within two weeks of starting therapy and then stabilize regardless of baseline kidney function. changes that do not fit this pattern should prompt further evaluation to exclude the possibility of acute kidney injury. in two studies that included patients with type 2 diabetes mellitus with moderate renal impairment, the acute effect on egfr reversed after treatment discontinuation, suggesting acute hemodynamic changes may play a role in the renal function changes observed with dapagliflozin. decrease in lymphocyte counts saxagliptin a dose-related mean decrease in absolute lymphocyte count has been observed with saxagliptin. in a pool of 5 placebo-controlled studies, a mean decrease in absolute lymphocyte count of approximately 100 cells/microl relative to placebo was observed. the proportion of patients who were reported to have a lymphocyte count â¤750 cells/microl was 0.5%, 1.5%, and 0.4% in the 2.5 mg, 5 mg saxagliptin and placebo groups, respectively. the clinical significance of this decrease in lymphocyte count relative to placebo is not known. the effect of saxagliptin on lymphocyte counts in patients with lymphocyte abnormalities (e.g., human immunodeficiency virus) is unknown. increase in hematocrit dapagliflozin in a pool of 13 placebo-controlled studies with dapagliflozin, increases from baseline in mean hematocrit values were observed in dapagliflozin-treated patients starting at week 1 and continuing up to week 16, when the maximum mean difference from baseline was observed. at week 24, the mean changes from baseline in hematocrit were -0.33% in the placebo group and 2.30% in the 10 mg dapagliflozin group. by week 24, hematocrit values >55% were reported in 0.4% of placebo-treated patients and 1.3% of 10 mg dapagliflozin-treated patients. increase in low-density lipoprotein cholesterol patients treated with qtern demonstrated a mean percent increase from baseline ldl-cholesterol (ranging from 2.1 to 6.9%). elevations in creatine kinase an imbalance in the number of subjects who experienced serum creatine kinase (ck) elevations >10x the upper limit of normal (a marker of muscle injury/necrosis) was observed in 5 subjects (1%) treated with qtern. the elevations were transient. rhabdomyolysis was reported for one of those subjects for which no obvious cause was identified. decrease in serum bicarbonate in a study of concomitant therapy of 10 mg dapagliflozin with exenatide extended-release (on a background of metformin), four patients (1.7%) on concomitant therapy had a serum bicarbonate value of less than or equal to 13 meq/l compared to one each (0.4%) in the dapagliflozin and exenatide-extended release treatment groups. 6.2 postmarketing experience additional adverse reactions have been identified during post-approval use of dapagliflozin and saxagliptin. because the following reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. dapagliflozin ⢠ketoacidosis ⢠acute kidney injury ⢠urosepsis and pyelonephritis ⢠necrotizing fasciitis of the perineum (fournierâs gangrene) ⢠rash saxagliptin ⢠hypersensitivity reactions including anaphylaxis, angioedema, and exfoliative skin conditions ⢠pancreatitis ⢠severe and disabling arthralgia ⢠bullous pemphigoid ⢠rhabdomyolysis
Adverse Reactions Table:
Table 1: Adverse Reactions Reported in ≥2% of Subjects Treated with 10 mg Dapagliflozin and 5 mg Saxagliptin plus Metformin (≥1500 mg)| Adverse ReactionPreferred TermAdverse reactions that are medically related were grouped to a single preferred term. | Frequency % |
| Upper respiratory tract infection | 13.6 |
| Urinary tract infection | 5.7 |
| Dyslipidemia | 5.1 |
| Headache | 4.3 |
| Diarrhea | 3.7 |
| Back pain | 3.3 |
| Genital infection | 3.0 |
| Arthralgia | 2.4 |
Drug Interactions:
7 drug interactions table 2: clinically relevant interactions with qtern strong inhibitors of cyp3a4/5 enzymes clinical impact ketoconazole significantly increased saxagliptin exposure. similar significant increases in plasma concentrations of saxagliptin are anticipated with other strong cyp3a4/5 inhibitors (e.g., atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, ritonavir, saquinavir, and telithromycin). intervention do not coadminister qtern with strong cytochrome p450 3a4/5 inhibitors [see dosage and administration (2.4 ) and clinical pharmacology (12.3) ] . insulin or insulin secretagogues clinical impact the risk of hypoglycemia may be increased when qtern is used concomitantly with insulin or insulin secretagogues (e.g., sulfonylurea) [see warnings and precuations (5.6) ] . intervention concomitant use may require lower doses of insulin or the insulin secretagogue to reduce the risk of hypoglycemia. lithium clinical impact concomitant use of an sglt2 i
Read more...nhibitor with lithium may decrease serum lithium concentrations. intervention monitor serum lithium concentration more frequently during qtern initiation and dosage changes. positive urine glucose test clinical impact sglt2 inhibitors increase urinary glucose excretion and will lead to positive urine glucose tests. intervention monitoring glycemic control with urine glucose tests is not recommended in patients taking sglt2 inhibitors. use alternative methods to monitor glycemic control. interference with 1,5âanhydroglucitol (1,5âag) assay clinical impact measurements of 1,5âag are unreliable in assessing glycemic control in patients taking sglt2 inhibitors. intervention monitoring glycemic control with 1,5âag assay is not recommended. use alternative methods to monitor glycemic control. ⢠strong cyp3a4/5 inhibitors (e.g., ketoconazole): do not coadminister qtern with strong cytochrome p450 3a4/5 inhibitors. ( 2.4 , 7) ⢠see full prescribing information for additional drug interactions and information on interference of qtern with laboratory tests. ( 7 )
Use in Specific Population:
8 use in specific populations ⢠pregnancy: advise females of the potential risk to a fetus especially during the second and third trimesters. (8.1) ⢠lactation: not recommended when breastfeeding. (8.2) ⢠geriatrics: higher incidence of adverse reactions related to hypotension. ( 5.4 , 8.5 ) ⢠renal impairment: higher incidence of adverse reactions related to volume depletion. ( 5.4 , 8.6) 8.1 pregnancy risk summary based on animal data showing adverse renal effects from dapagliflozin, qtern is not recommended during the second and third trimesters of pregnancy. the limited available data with qtern or its components (dapagliflozin and saxagliptin) in pregnant women are not sufficient to determine a drug-associated risk for major birth defects or miscarriage. there are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy (see clinical considerations ) . in animal studies, adverse renal pelvic and tubular dilatations, that were not fu
Read more...lly reversible, were observed in rats when dapagliflozin (a component of qtern) was administered during a period of renal development corresponding to the late second and third trimesters of human pregnancy, at all doses tested; the lowest of which provided an exposure 15-times the 10 mg clinical dose ( see data ) . no adverse developmental effects were observed when saxagliptin was administered to pregnant rats and rabbits (see data ) . the estimated background risk of major birth defects is 6 to 10% in women with pre-gestational diabetes with an hba1c greater than 7% and has been reported to be as high as 20 to 25% in women with an hba1c greater than 10%. the estimated background risk of miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal and/or embryofetal risk poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, preeclampsia, spontaneous abortions, preterm delivery and delivery complications. poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia-related morbidity. data animal data dapagliflozin dapagliflozin dosed directly to juvenile rats from postnatal day (pnd) 21 until pnd 90 at doses of 1, 15, or 75 mg/kg/day, increased kidney weights and increased the incidence of renal pelvic and tubular dilatations at all dose levels. exposure at the lowest dose was 15-times the 10 mg clinical dose (based on auc). the renal pelvic and tubular dilatations observed in juvenile animals did not fully reverse within a 1-month recovery period. in a prenatal and postnatal development study, dapagliflozin was administered to maternal rats from gestation day 6 through lactation day 21 at doses of 1, 15, or 75 mg/kg/day, and pups were indirectly exposed in utero and throughout lactation. increased incidence or severity of renal pelvic dilatation was observed in 21 day-old pup offspring of treated dams at 75 mg/kg/day (maternal and pup dapagliflozin exposures were 1415-times and 137-times, respectively, the human values at the 10 mg clinical dose, based on auc). dose-related reductions in pup body weights were observed at greater than or equal to 29-times the 10 mg clinical dose (based on auc). no adverse effects on developmental endpoints were noted at 1 mg/kg/day, (19-times the 10 mg clinical dose, based on auc). these outcomes occurred with drug exposure during periods of renal development in rats that corresponds to the late second and third trimester of human development. in embryofetal development studies in rats and rabbits, dapagliflozin was administered throughout organogenesis, corresponding to the first trimester of human pregnancy. in rats, dapagliflozin was neither embryolethal nor teratogenic at doses up to 75 mg/kg/day (1441-times the 10 mg clinical dose, based on auc). dose-related effects on the rat fetus (structural abnormalities and reduced body weight) occurred only at higher dosages, equal to or greater than 150 mg/kg (more than 2344-times the 10 mg clinical dose, based on auc), which were associated with maternal toxicity. no developmental toxicities were observed in rabbits at doses up to 180 mg/kg/day (1191-times the 10 mg clinical dose, based on auc). saxagliptin in embryofetal development studies, saxagliptin was administered to pregnant rats and rabbits during the period of organogenesis, corresponding to the first trimester of human pregnancy. no adverse developmental effects were observed in either species at exposures 1503- and 152-times the 5 mg clinical dose in rats and rabbits, respectively, based on auc. saxagliptin crosses the placenta into the fetus following dosing in pregnant rats. in a prenatal and postnatal development study, no adverse developmental effects were observed in maternal rats administered saxagliptin from gestation day 6 through lactation day 21 at exposures up to 470-times the 5 mg clinical dose, based on auc. 8.2 lactation risk summary there is no information regarding the presence of qtern or its components (dapagliflozin and saxagliptin) in human milk, the effects on the breastfed infant, or the effects on milk production. dapagliflozin and saxagliptin are present in the milk of lactating rats ( see data ) . however, due to species-specific differences in lactation physiology, the clinical relevance of these data is not clear. since human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney. because of the potential for serious adverse reactions in a breastfed infant, advise women that use of qtern is not recommended while breastfeeding. data dapagliflozin dapagliflozin was present at a milk/plasma ratio of 0.49, indicating that dapagliflozin and its metabolites are transferred into milk at a concentration that is approximately 50% of that in maternal plasma. juvenile rats directly exposed to dapagliflozin showed a risk to the developing kidney (renal pelvic and tubular dilatations) during maturation. saxagliptin saxagliptin is secreted in the milk of lactating rats at approximately a 1:1 ratio with plasma drug concentrations. 8.4 pediatric use safety and effectiveness of qtern in pediatric patients under 18 years of age have not been established. 8.5 geriatric use because elderly patients are more likely to have decreased renal function, care should be taken when using qtern in the elderly based on renal function [see dosage and administration (2.3) ] . dapagliflozin a total of 1424 (24%) of the 5936 dapagliflozin-treated patients were 65 years and older and 207 (3.5%) patients were 75 years and older in a pool of 21 double-blind, controlled, clinical studies assessing the efficacy of dapagliflozin in improving glycemic control. after controlling for level of renal function (egfr), in clinical studies with dapagliflozin, efficacy was similar for patients under age 65 years and those 65 years and older. in patients 65 years and older, a higher proportion of patients treated with dapagliflozin had adverse reactions of hypotension [see warnings and precautions (5.4) ] . saxagliptin in the seven double-blind, controlled clinical safety and efficacy trials of saxagliptin, a total of 4751 (42.0%) of the 11,301 patients randomized to saxagliptin were 65 years and over, and 1210 (10.7%) were 75 years and over. no overall differences in safety or effectiveness were observed between subjects â¥65 years old and younger subjects. while this clinical experience has not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out. 8.6 renal impairment qtern is contraindicated in patients with moderate to severe renal impairment (egfr less than 45 ml/min/1.73 m 2 ), esrd, or on dialysis [see dosage and administration (2.3) , contraindications (4) and warnings and precautions (5.3) ]. dapagliflozin dapagliflozin was evaluated in two glycemic control studies that included patients with moderate renal impairment (an egfr of 45 to less than 60 ml/min/1.73 m 2 , and an egfr of 30 to less than 60 ml/min/1.73 m 2 ). patients with diabetes and renal impairment using dapagliflozin for glycemic control may be more likely to experience hypotension and may be at higher risk for acute kidney injury secondary to volume depletion. in the study of patients with an egfr 30 to less than 60 ml/min/1.73 m 2 , 13 patients receiving dapagliflozin experienced bone fractures compared to none receiving placebo . 8.7 hepatic impairment qtern may be used in patients with hepatic impairment. however, the benefit-risk for the use of qtern in patients with severe hepatic impairment should be individually assessed since safety and efficacy have not been studied in this population [see clinical pharmacology (12.3) ].
Use in Pregnancy:
8.1 pregnancy risk summary based on animal data showing adverse renal effects from dapagliflozin, qtern is not recommended during the second and third trimesters of pregnancy. the limited available data with qtern or its components (dapagliflozin and saxagliptin) in pregnant women are not sufficient to determine a drug-associated risk for major birth defects or miscarriage. there are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy (see clinical considerations ) . in animal studies, adverse renal pelvic and tubular dilatations, that were not fully reversible, were observed in rats when dapagliflozin (a component of qtern) was administered during a period of renal development corresponding to the late second and third trimesters of human pregnancy, at all doses tested; the lowest of which provided an exposure 15-times the 10 mg clinical dose ( see data ) . no adverse developmental effects were observed when saxagliptin was administered to pregnant ra
Read more...ts and rabbits (see data ) . the estimated background risk of major birth defects is 6 to 10% in women with pre-gestational diabetes with an hba1c greater than 7% and has been reported to be as high as 20 to 25% in women with an hba1c greater than 10%. the estimated background risk of miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal and/or embryofetal risk poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, preeclampsia, spontaneous abortions, preterm delivery and delivery complications. poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia-related morbidity. data animal data dapagliflozin dapagliflozin dosed directly to juvenile rats from postnatal day (pnd) 21 until pnd 90 at doses of 1, 15, or 75 mg/kg/day, increased kidney weights and increased the incidence of renal pelvic and tubular dilatations at all dose levels. exposure at the lowest dose was 15-times the 10 mg clinical dose (based on auc). the renal pelvic and tubular dilatations observed in juvenile animals did not fully reverse within a 1-month recovery period. in a prenatal and postnatal development study, dapagliflozin was administered to maternal rats from gestation day 6 through lactation day 21 at doses of 1, 15, or 75 mg/kg/day, and pups were indirectly exposed in utero and throughout lactation. increased incidence or severity of renal pelvic dilatation was observed in 21 day-old pup offspring of treated dams at 75 mg/kg/day (maternal and pup dapagliflozin exposures were 1415-times and 137-times, respectively, the human values at the 10 mg clinical dose, based on auc). dose-related reductions in pup body weights were observed at greater than or equal to 29-times the 10 mg clinical dose (based on auc). no adverse effects on developmental endpoints were noted at 1 mg/kg/day, (19-times the 10 mg clinical dose, based on auc). these outcomes occurred with drug exposure during periods of renal development in rats that corresponds to the late second and third trimester of human development. in embryofetal development studies in rats and rabbits, dapagliflozin was administered throughout organogenesis, corresponding to the first trimester of human pregnancy. in rats, dapagliflozin was neither embryolethal nor teratogenic at doses up to 75 mg/kg/day (1441-times the 10 mg clinical dose, based on auc). dose-related effects on the rat fetus (structural abnormalities and reduced body weight) occurred only at higher dosages, equal to or greater than 150 mg/kg (more than 2344-times the 10 mg clinical dose, based on auc), which were associated with maternal toxicity. no developmental toxicities were observed in rabbits at doses up to 180 mg/kg/day (1191-times the 10 mg clinical dose, based on auc). saxagliptin in embryofetal development studies, saxagliptin was administered to pregnant rats and rabbits during the period of organogenesis, corresponding to the first trimester of human pregnancy. no adverse developmental effects were observed in either species at exposures 1503- and 152-times the 5 mg clinical dose in rats and rabbits, respectively, based on auc. saxagliptin crosses the placenta into the fetus following dosing in pregnant rats. in a prenatal and postnatal development study, no adverse developmental effects were observed in maternal rats administered saxagliptin from gestation day 6 through lactation day 21 at exposures up to 470-times the 5 mg clinical dose, based on auc.
Pediatric Use:
8.4 pediatric use safety and effectiveness of qtern in pediatric patients under 18 years of age have not been established.
Geriatric Use:
8.5 geriatric use because elderly patients are more likely to have decreased renal function, care should be taken when using qtern in the elderly based on renal function [see dosage and administration (2.3) ] . dapagliflozin a total of 1424 (24%) of the 5936 dapagliflozin-treated patients were 65 years and older and 207 (3.5%) patients were 75 years and older in a pool of 21 double-blind, controlled, clinical studies assessing the efficacy of dapagliflozin in improving glycemic control. after controlling for level of renal function (egfr), in clinical studies with dapagliflozin, efficacy was similar for patients under age 65 years and those 65 years and older. in patients 65 years and older, a higher proportion of patients treated with dapagliflozin had adverse reactions of hypotension [see warnings and precautions (5.4) ] . saxagliptin in the seven double-blind, controlled clinical safety and efficacy trials of saxagliptin, a total of 4751 (42.0%) of the 11,301 patients randomized to saxagliptin were 65 years and over, and 1210 (10.7%) were 75 years and over. no overall differences in safety or effectiveness were observed between subjects â¥65 years old and younger subjects. while this clinical experience has not identified differences in responses between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out.
Overdosage:
10 overdosage in the event of an overdose, contact the poison control center. appropriate supportive treatment should be initiated as dictated by the patientâs clinical status. the removal of dapagliflozin by hemodialysis has not been studied. saxagliptin and its major metabolite can be removed by hemodialysis (23% of dose over 4 hours).
Description:
11 description qtern tablets for oral use contain dapagliflozin and saxagliptin. dapagliflozin propanediol is an active inhibitor of sodiumâglucose cotransporter 2 (sglt2). it is described chemically as dâglucitol, 1,5âanhydroâ1âcâ[4âchloroâ3â[(4âethoxyphenyl)methyl]phenyl]â, (1 s )â. dapagliflozin is compounded with (2 s )â1,2âpropanediol, hydrate (1:1:1) with an empirical formula as c 21 h 25 clo 6 â¢c 3 h 8 o 2 â¢h 2 o and the molecular weight of 502.98. the structural formula is: saxagliptin is an active inhibitor of the dipeptidylâpeptidaseâ4 (dppâ4) enzyme. it is isolated in the monohydrate form chemically known as (1 s ,3 s ,5 s )â2â[(2 s )â2âaminoâ2â(3âhydroxytricyclo [3.3.1.1] decâ1âyl)acetyl]â2âazabicyclo[3.1.0]hexaneâ3âcarbonitrile, monohydrate or (1 s ,3 s ,5 s )â2â[(2 s )â2âaminoâ2â(3âhydroxyâ1âadamantanâ1âyl)acetyl]â2âazabicyclo[3.1.0]hexaneâ3âcarbonitrile hydrate. the empirical formula is c 18 h 25 n 3 o 2 â¢h 2 o and the molecular weight is 333.43. the structural formula is: qtern is available as film-coated tablets of two strengths: ⢠5 mg dapagliflozin/5 mg saxagliptin. each tablet contains 5 mg dapagliflozin (equivalent to 6.15 mg dapagliflozin propanediol) and 5 mg saxagliptin (exists in the form of hcl salt). ⢠10 mg dapagliflozin/5 mg saxagliptin. each tablet contains 10 mg dapagliflozin (equivalent to 12.3 mg dapagliflozin propanediol) and 5 mg saxagliptin (exists in the form of hcl salt). each tablet also contains the following inactive ingredients: anhydrous lactose, croscarmellose sodium, iron oxides, magnesium stearate, microcrystalline cellulose, polyvinyl alcohol, polyethylene glycol, silicon dioxide, talc, and titanium dioxide. hydrochloric acid and sodium hydroxide (if needed) are added for ph adjustment. dapagliflozin chemical structure saxagliptin checmical structure
Clinical Pharmacology:
12 clinical pharmacology 12.1 mechanism of action dapagliflozin sodium-glucose cotransporter 2 (sglt2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. dapagliflozin is an inhibitor of sglt2. by inhibiting sglt2, dapagliflozin reduces reabsorption of filtered glucose and thereby promotes urinary glucose excretion. saxagliptin increased concentrations of the incretin hormones such as glucagon-like peptide-1 (glp-1) and glucose-dependent insulinotropic polypeptide (gip) are released into the bloodstream from the small intestine in response to meals. these hormones cause insulin release from the pancreatic beta cells in a glucose-dependent manner but are inactivated by the dpp-4 enzyme within minutes. glp-1 also lowers glucagon secretion from pancreatic alpha cells, reducing hepatic glucose production. in patients with type 2 diabetes mellitus, concentrations of glp-1 are reduced but the insulin respo
Read more...nse to glp-1 is preserved. saxagliptin is a competitive dpp-4 inhibitor that slows the inactivation of the incretin hormones, thereby increasing their bloodstream concentrations and reducing fasting and postprandial glucose concentrations in a glucose-dependent manner in patients with type 2 diabetes mellitus. 12.2 pharmacodynamics dapagliflozin increases in the amount of glucose excreted in the urine were observed in healthy subjects and in patients with type 2 diabetes mellitus following the administration of dapagliflozin. dapagliflozin dose of 5 or 10 mg per day in patients with type 2 diabetes mellitus for 12 weeks resulted in excretion of approximately 70 grams of glucose in the urine per day at week 12. a near maximum glucose excretion was observed at the dapagliflozin daily dose of 20 mg. this urinary glucose excretion with dapagliflozin also results in increases in urinary volume [see adverse reactions (6.1) ] . after discontinuation of dapagliflozin, on average, the elevation in urinary glucose excretion approaches baseline by about 3 days from discontinuation for the 10 mg dose. figure 1: scatter plot and fitted line of change from baseline in 24-hour urinary glucose amount versus dapagliflozin dose in healthy subjects and subjects with type 2 diabetes mellitus (t2dm) (semi-log plot) saxagliptin in patients with type 2 diabetes mellitus, administration of saxagliptin inhibits dpp-4 enzyme activity for a 24-hour period. after an oral glucose load or a meal, this dpp-4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active glp-1 and gip, decreased glucagon concentrations, and increased glucose-dependent insulin secretion from pancreatic beta cells. the rise in insulin and decrease in glucagon were associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. cardiac electrophysiology dapagliflozin dapagliflozin was not associated with clinically meaningful prolongation of qtc interval at daily doses up to 150 mg (15-times the recommended maximum dose) in a study of healthy subjects. in addition, no clinically meaningful effect on qtc interval was observed following single doses of up to 500 mg (50-times the recommended maximum daily dose) of dapagliflozin in healthy subjects. saxagliptin in a randomized, double-blind, placebo-controlled, 4-way crossover, active comparator study using moxifloxacin in 40 healthy subjects, saxagliptin was not associated with clinically meaningful prolongation of the qtc interval or heart rate at daily doses up to 40 mg (8-times the recommended maximum daily dose). figure 1 12.3 pharmacokinetics overall, the pharmacokinetics of dapagliflozin and saxagliptin were not affected in a clinically relevant manner when administered as qtern. saxagliptin the pharmacokinetics of saxagliptin and its active metabolite, 5-hydroxy saxagliptin, were similar in healthy subjects and in patients with type 2 diabetes mellitus. the c max and auc values of saxagliptin and its active metabolite increased proportionally in the 2.5 to 400 mg dose range. following a 5 mg single oral dose of saxagliptin to healthy subjects, the mean plasma auc values for saxagliptin and its active metabolite were 78 ngâ¢h/ml and 214 ngâ¢h/ml, respectively. the corresponding plasma c max values were 24 ng/ml and 47 ng/ml, respectively. the average variability (%cv) for auc and c max for both saxagliptin and its active metabolite was less than 25%. no appreciable accumulation of either saxagliptin or its active metabolite was observed with repeated once daily dosing at any dose level. no dose- and time-dependence were observed in the clearance of saxagliptin and its active metabolite over 14 days of once daily dosing with saxagliptin at doses ranging from 2.5 to 400 mg. absorption dapagliflozin following oral administration of dapagliflozin, the maximum plasma concentration (c max ) is usually attained within 2 hours under fasting state. the c max and auc values increase dose proportionally with increase in dapagliflozin dose in the therapeutic dose range. the absolute oral bioavailability of dapagliflozin following the administration of a 10 mg dose is 78%. administration of dapagliflozin with a high-fat meal decreases its c max by up to 50% and prolongs t max by approximately 1 hour but does not alter auc as compared with the fasted state. saxagliptin the median time to maximum concentration (t max ) following the 5 mg once daily dose was 2 hours for saxagliptin and 4 hours for its active metabolite. administration with a high-fat meal resulted in an increase in t max of saxagliptin by approximately 20 minutes as compared to fasted conditions. there was a 27% increase in the auc of saxagliptin when given with a meal as compared to fasted conditions. distribution dapagliflozin dapagliflozin is approximately 91% protein bound. protein binding is not altered in patients with renal or hepatic impairment. saxagliptin the in vitro protein binding of saxagliptin and its active metabolite in human serum is negligible. therefore, changes in blood protein levels in various disease states (e.g., renal or hepatic impairment) are not expected to alter the disposition of saxagliptin. metabolism dapagliflozin the metabolism of dapagliflozin is primarily mediated by ugt1a9; cyp-mediated metabolism is a minor clearance pathway in humans. dapagliflozin is extensively metabolized, primarily to yield dapagliflozin 3-o-glucuronide, which is an inactive metabolite. dapagliflozin 3-o-glucuronide accounted for 61% of a 50 mg [ 14 c]-dapagliflozin dose and is the predominant drug-related component in human plasma. saxagliptin the metabolism of saxagliptin is primarily mediated by cytochrome p450 3a4/5 (cyp3a4/5). the major metabolite of saxagliptin is also a dpp-4 inhibitor, which is one-half as potent as saxagliptin. therefore, strong cyp3a4/5 inhibitors and inducers will alter the pharmacokinetics of saxagliptin and its active metabolite [see drug interactions (7) ] . elimination dapagliflozin dapagliflozin and related metabolites are primarily eliminated via the renal pathway. following a single 50 mg dose of [ 14 c]-dapagliflozin, 75% and 21% total radioactivity is excreted in urine and feces, respectively. in urine, less than 2% of the dose is excreted as parent drug. in feces, approximately 15% of the dose is excreted as parent drug. the mean plasma terminal half-life (t 1/2 ) for dapagliflozin is approximately 12.9 hours following a single oral dose of dapagliflozin 10 mg. saxagliptin saxagliptin is eliminated by both renal and hepatic pathways. following a single 50 mg dose of [ 14 c]-saxagliptin, 24%, 36%, and 75% of the dose was excreted in the urine as saxagliptin, its active metabolite, and total radioactivity, respectively. the average renal clearance of saxagliptin (~230 ml/min) was greater than the average estimated glomerular filtration rate (~120 ml/min), suggesting some active renal excretion. a total of 22% of the administered radioactivity was recovered in feces representing the fraction of the saxagliptin dose excreted in bile and/or unabsorbed drug from the gastrointestinal tract. following a single oral dose of saxagliptin 5 mg to healthy subjects, the mean plasma terminal half-life (t 1/2 ) for saxagliptin and its active metabolite was 2.5 and 3.1 hours, respectively. specific populations effects of age, gender, race and body weight on pharmacokinetics based on a population pharmacokinetic analysis, age, gender, race, and body weight do not have a clinically meaningful effect on the pharmacokinetics of saxagliptin and dapagliflozin. renal impairment dapagliflozin at steady state (20 mg once daily dapagliflozin for 7 days), patients with type 2 diabetes mellitus with mild, moderate, or severe renal impairment (as determined by egfr) had geometric mean systemic exposures of dapagliflozin that were 45%, 100%, and 200% higher, respectively, as compared to patients with type 2 diabetes mellitus with normal renal function. higher systemic exposure of dapagliflozin in patients with type 2 diabetes mellitus with renal impairment did not result in a correspondingly higher 24-hour urinary glucose excretion. the steady-state 24-hour urinary glucose excretion in patients with type 2 diabetes mellitus and mild, moderate, and severe renal impairment was 42%, 80%, and 90% lower, respectively, than in patients with type 2 diabetes mellitus with normal renal function. the impact of hemodialysis on dapagliflozin exposure is not known [see dosage and administration (2.3) , warnings and precautions (5.4) and use in specific populations (8.6) ] . saxagliptin a single-dose, open-label study was conducted to evaluate the pharmacokinetics of saxagliptin (10 mg dose) in subjects with varying degrees of chronic renal impairment compared to subjects with normal renal function. the 10 mg dosage is not an approved dosage. the degree of renal impairment did not affect c max of saxagliptin or its metabolite. in subjects with moderate renal impairment (egfr 30 to less than 45 ml/min/1.73 m 2 ), severe renal impairment (egfr 15 to less than 30 ml/min/1.73 m 2 ) and esrd patient on hemodialysis, the auc values of saxagliptin or its active metabolite were >2-fold higher than auc values in subjects with normal renal function. qtern is contraindicated in patients with an egfr <45 ml/min/1.73 m 2 . hepatic impairment dapagliflozin in subjects with mild and moderate hepatic impairment (child-pugh classes a and b), mean c max and auc of dapagliflozin were up to 12% and 36% higher, respectively, as compared to healthy matched control subjects following single-dose administration of 10 mg dapagliflozin. these differences were not considered to be clinically meaningful. in patients with severe hepatic impairment (child-pugh class c), mean c max and auc of dapagliflozin were up to 40% and 67% higher, respectively, as compared to healthy matched controls [see use in specific populations (8.7) ] . saxagliptin in subjects with hepatic impairment (child-pugh classes a, b, and c), mean c max and auc of saxagliptin were up to 8% and 77% higher, respectively, compared to healthy matched controls following administration of a single 10 mg dose of saxagliptin. the 10 mg dosage is not an approved dosage. the corresponding c max and auc of the active metabolite were up to 59% and 33% lower, respectively, compared to healthy matched controls. these differences are not considered to be clinically meaningful. pediatric pharmacokinetics of qtern in the pediatric population has not been studied. drug interactions saxagliptin and dapagliflozin the lack of pharmacokinetic interaction between dapagliflozin and saxagliptin was demonstrated in a drug-drug interaction study between dapagliflozin and saxagliptin. dapagliflozin in vitro assessment of drug interactions the metabolism of dapagliflozin is primarily via glucuronide conjugation mediated by udp glucuronosyltransferase 1a9 (ugt1a9). in in vitro studies, dapagliflozin and dapagliflozin 3-o-glucuronide neither inhibited cyp 1a2, 2c9, 2c19, 2d6, or 3a4, nor induced cyp 1a2, 2b6, or 3a4. dapagliflozin is a weak substrate of the p-glycoprotein (pâgp) active transporter, and dapagliflozin 3-o-glucuronide is a substrate for the oat3 active transporter. dapagliflozin or dapagliflozin 3-o-glucuronide did not meaningfully inhibit pâgp, oct2, oat1, or oat3 active transporters. overall, dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are pâgp, oct2, oat1, or oat3 substrates. effects of other drugs on dapagliflozin table 3 shows the effect of coadministered drugs on the pharmacokinetics of dapagliflozin. table 3: effects of coadministered drugs on dapagliflozin systemic exposure coadministered drug (dose regimen) single dose unless otherwise noted. dapagliflozin (dose regimen) dapagliflozin change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max oral antidiabetic agents metformin (1000 mg) 20 mg â1% â7% pioglitazone (45 mg) 50 mg 0% â9% sitagliptin (100 mg) 20 mg â8% â4% glimepiride (4 mg) 20 mg â1% â1% voglibose (0.2 mg three times daily) 10 mg â1% â4% saxagliptin (5 mg single dose) 10 mg (single dose) â2% â6% other medications hydrochlorothiazide (25 mg) 50 mg â7% â1% bumetanide (1 mg) 10 mg once daily for 7 days â5% â8% valsartan (320 mg) 20 mg â2% â12% simvastatin (40 mg) 20 mg â1% â2% antiâinfective agent rifampin (600 mg once daily for 6 days) 10 mg â22% â7% nonsteroidal antiâinflammatory agent mefenamic acid (loading dose of 500 mg followed by 14 doses of 250 mg every 6 hours) 10 mg â51% â13% effects of dapagliflozin on other drugs table 4 shows the effect of dapagliflozin on other coadministered drugs. dapagliflozin did not meaningfully affect the pharmacokinetics of the coadministered drugs. table 4: effects of dapagliflozin on the systemic exposures of coadministered drugs coadministered drug (dose regimen) single dose unless otherwise noted. dapagliflozin (dose regimen) coadministered drug change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max oral antidiabetic agents metformin (1000 mg) 20 mg 0% â5% pioglitazone (45 mg) 50 mg 0% â7% sitagliptin (100 mg) 20 mg â1% â11% glimepiride (4 mg) 20 mg â13% â4% other medications hydrochlorothiazide (25 mg) 50 mg â1% â5% bumetanide (1 mg) 10 mg once daily for 7 days â13% â13% valsartan (320 mg) 20 mg â5% â6% simvastatin (40 mg) 20 mg â19% â6% digoxin (0.25 mg) 20 mg loading dose then 10 mg once daily for 7 days 0% â1% warfarin (25 mg) sâwarfarin râwarfarin 20 mg loading dose then 10 mg once daily for 7 days â3% â6% â7% â8% saxagliptin in vitro assessment of drug interactions the metabolism of saxagliptin is primarily mediated by cyp3a4/5. in in vitro studies, saxagliptin and its active metabolite did not inhibit cyp1a2, 2a6, 2b6, 2c9, 2c19, 2d6, 2e1, or 3a4, or induce cyp1a2, 2b6, 2c9, or 3a4. therefore, saxagliptin is not expected to alter the metabolic clearance of coadministered drugs that are metabolized by these enzymes. saxagliptin is a p-glycoprotein (pâgp) substrate but is not a significant inhibitor or inducer of pâgp. effects of other drugs on saxagliptin and its active metabolite, 5-hydroxy saxagliptin table 5: effect of coadministered drugs on systemic exposures of saxagliptin and its active metabolite, 5-hydroxy saxagliptin coadministered drug dosage of coadministered drug single dose unless otherwise noted. dosage of saxagliptin saxagliptin change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max metformin 1000 mg 100 mg saxagliptin 5âhydroxy saxagliptin â2% â1% â21% â12% glyburide 5 mg 10 mg saxagliptin 5âhydroxy saxagliptin â2% nd â8% nd pioglitazone results exclude one subject. 45 mg qd for 10 days 10 mg qd for 5 days saxagliptin 5âhydroxy saxagliptin â11% nd â11% nd dapagliflozin 10 mg single dose 5 mg single dose saxagliptin 5-hydroxy saxagliptin â1% â9% â7% â6% digoxin 0.25 mg q6h first day followed by q12h second day followed by qd for 5 days 10 mg qd for 7 days saxagliptin 5âhydroxy saxagliptin â5% â6% â1% â2% simvastatin 40 mg qd for 8 days 10 mg qd for 4 days saxagliptin 5âhydroxy saxagliptin â12% â2% â21% â8% diltiazem 360 mg la qd for 9 days 10 mg saxagliptin 5âhydroxy saxagliptin â109% â34% â63% â43% rifampin the plasma dipeptidyl peptidase-4 (dpp-4) activity inhibition over a 24-hour dose interval was not affected by rifampin. 600 mg qd for 6 days 5 mg saxagliptin 5âhydroxy saxagliptin â76% â3% â53% â39% omeprazole 40 mg qd for 5 days 10 mg saxagliptin 5âhydroxy saxagliptin â13% nd â2% nd aluminum hydroxide + magnesium hydroxide + simethicone aluminum hydroxide: 2400 mg magnesium hydroxide: 2400 mg simethicone: 240 mg 10 mg saxagliptin 5âhydroxy saxagliptin â3% nd â26% nd famotidine 40 mg 10 mg saxagliptin 5âhydroxy saxagliptin â3% nd â14% nd saxagliptin coadministered with strong cyp3a4/5 inhibitors [see drug interactions (7) and dosage and administration (2.4) ] : ketoconazole 200 mg bid for 9 days 100 mg saxagliptin 5âhydroxy saxagliptin â145% â88% â62% â95% ketoconazole 200 mg bid for 7 days 20 mg saxagliptin 5âhydroxy saxagliptin â267% nd â144% nd nd=not determined; qd=once daily; q6h=every 6 hours; q12h=every 12 hours; bid=twice daily; la=long acting. effects of saxagliptin on other drugs table 6: effect of saxagliptin on systemic exposures of coadministered drugs coadministered drug dosage of coadministered drug single dose unless otherwise noted. dosage of saxagliptin coadministered drug change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max metformin 1000 mg 100 mg metformin â20% â9% glyburide 5 mg 10 mg glyburide â6% â16% pioglitazone results include all subjects. 45 mg qd for 10 days 10 mg qd for 5 days pioglitazone hydroxyâpioglitazone â8% nd â14% nd digoxin 0.25 mg q6h first day followed by q12h second day followed by qd for 5 days 10 mg qd for 7 days digoxin â6% â9% simvastatin 40 mg qd for 8 days 10 mg qd for 4 days simvastatin simvastatin acid â4% â16% â12% 0% diltiazem 360 mg la qd for 9 days 10 mg diltiazem â10% â16% ketoconazole 200 mg bid for 9 days 100 mg ketoconazole â13% â16% ethinyl estradiol and norgestimate ethinyl estradiol 0.035 mg and norgestimate 0.250 mg for 21 days 5 mg qd for 21 days ethinyl estradiol norelgestromin norgestrel â7% â10% â13% â2% â9% â17% nd=not determined; qd=once daily; q6h=every 6 hours; q12h=every 12 hours; bid=twice daily; la=long acting.
Mechanism of Action:
12.1 mechanism of action dapagliflozin sodium-glucose cotransporter 2 (sglt2), expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. dapagliflozin is an inhibitor of sglt2. by inhibiting sglt2, dapagliflozin reduces reabsorption of filtered glucose and thereby promotes urinary glucose excretion. saxagliptin increased concentrations of the incretin hormones such as glucagon-like peptide-1 (glp-1) and glucose-dependent insulinotropic polypeptide (gip) are released into the bloodstream from the small intestine in response to meals. these hormones cause insulin release from the pancreatic beta cells in a glucose-dependent manner but are inactivated by the dpp-4 enzyme within minutes. glp-1 also lowers glucagon secretion from pancreatic alpha cells, reducing hepatic glucose production. in patients with type 2 diabetes mellitus, concentrations of glp-1 are reduced but the insulin response to glp-1 is preserved. saxagliptin is a competitive dpp-4 inhibitor that slows the inactivation of the incretin hormones, thereby increasing their bloodstream concentrations and reducing fasting and postprandial glucose concentrations in a glucose-dependent manner in patients with type 2 diabetes mellitus.
Pharmacodynamics:
12.2 pharmacodynamics dapagliflozin increases in the amount of glucose excreted in the urine were observed in healthy subjects and in patients with type 2 diabetes mellitus following the administration of dapagliflozin. dapagliflozin dose of 5 or 10 mg per day in patients with type 2 diabetes mellitus for 12 weeks resulted in excretion of approximately 70 grams of glucose in the urine per day at week 12. a near maximum glucose excretion was observed at the dapagliflozin daily dose of 20 mg. this urinary glucose excretion with dapagliflozin also results in increases in urinary volume [see adverse reactions (6.1) ] . after discontinuation of dapagliflozin, on average, the elevation in urinary glucose excretion approaches baseline by about 3 days from discontinuation for the 10 mg dose. figure 1: scatter plot and fitted line of change from baseline in 24-hour urinary glucose amount versus dapagliflozin dose in healthy subjects and subjects with type 2 diabetes mellitus (t2dm) (semi-log plot) saxagliptin in patients with type 2 diabetes mellitus, administration of saxagliptin inhibits dpp-4 enzyme activity for a 24-hour period. after an oral glucose load or a meal, this dpp-4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active glp-1 and gip, decreased glucagon concentrations, and increased glucose-dependent insulin secretion from pancreatic beta cells. the rise in insulin and decrease in glucagon were associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. cardiac electrophysiology dapagliflozin dapagliflozin was not associated with clinically meaningful prolongation of qtc interval at daily doses up to 150 mg (15-times the recommended maximum dose) in a study of healthy subjects. in addition, no clinically meaningful effect on qtc interval was observed following single doses of up to 500 mg (50-times the recommended maximum daily dose) of dapagliflozin in healthy subjects. saxagliptin in a randomized, double-blind, placebo-controlled, 4-way crossover, active comparator study using moxifloxacin in 40 healthy subjects, saxagliptin was not associated with clinically meaningful prolongation of the qtc interval or heart rate at daily doses up to 40 mg (8-times the recommended maximum daily dose). figure 1
Pharmacokinetics:
12.3 pharmacokinetics overall, the pharmacokinetics of dapagliflozin and saxagliptin were not affected in a clinically relevant manner when administered as qtern. saxagliptin the pharmacokinetics of saxagliptin and its active metabolite, 5-hydroxy saxagliptin, were similar in healthy subjects and in patients with type 2 diabetes mellitus. the c max and auc values of saxagliptin and its active metabolite increased proportionally in the 2.5 to 400 mg dose range. following a 5 mg single oral dose of saxagliptin to healthy subjects, the mean plasma auc values for saxagliptin and its active metabolite were 78 ngâ¢h/ml and 214 ngâ¢h/ml, respectively. the corresponding plasma c max values were 24 ng/ml and 47 ng/ml, respectively. the average variability (%cv) for auc and c max for both saxagliptin and its active metabolite was less than 25%. no appreciable accumulation of either saxagliptin or its active metabolite was observed with repeated once daily dosing at any dose level. no dos
Read more...e- and time-dependence were observed in the clearance of saxagliptin and its active metabolite over 14 days of once daily dosing with saxagliptin at doses ranging from 2.5 to 400 mg. absorption dapagliflozin following oral administration of dapagliflozin, the maximum plasma concentration (c max ) is usually attained within 2 hours under fasting state. the c max and auc values increase dose proportionally with increase in dapagliflozin dose in the therapeutic dose range. the absolute oral bioavailability of dapagliflozin following the administration of a 10 mg dose is 78%. administration of dapagliflozin with a high-fat meal decreases its c max by up to 50% and prolongs t max by approximately 1 hour but does not alter auc as compared with the fasted state. saxagliptin the median time to maximum concentration (t max ) following the 5 mg once daily dose was 2 hours for saxagliptin and 4 hours for its active metabolite. administration with a high-fat meal resulted in an increase in t max of saxagliptin by approximately 20 minutes as compared to fasted conditions. there was a 27% increase in the auc of saxagliptin when given with a meal as compared to fasted conditions. distribution dapagliflozin dapagliflozin is approximately 91% protein bound. protein binding is not altered in patients with renal or hepatic impairment. saxagliptin the in vitro protein binding of saxagliptin and its active metabolite in human serum is negligible. therefore, changes in blood protein levels in various disease states (e.g., renal or hepatic impairment) are not expected to alter the disposition of saxagliptin. metabolism dapagliflozin the metabolism of dapagliflozin is primarily mediated by ugt1a9; cyp-mediated metabolism is a minor clearance pathway in humans. dapagliflozin is extensively metabolized, primarily to yield dapagliflozin 3-o-glucuronide, which is an inactive metabolite. dapagliflozin 3-o-glucuronide accounted for 61% of a 50 mg [ 14 c]-dapagliflozin dose and is the predominant drug-related component in human plasma. saxagliptin the metabolism of saxagliptin is primarily mediated by cytochrome p450 3a4/5 (cyp3a4/5). the major metabolite of saxagliptin is also a dpp-4 inhibitor, which is one-half as potent as saxagliptin. therefore, strong cyp3a4/5 inhibitors and inducers will alter the pharmacokinetics of saxagliptin and its active metabolite [see drug interactions (7) ] . elimination dapagliflozin dapagliflozin and related metabolites are primarily eliminated via the renal pathway. following a single 50 mg dose of [ 14 c]-dapagliflozin, 75% and 21% total radioactivity is excreted in urine and feces, respectively. in urine, less than 2% of the dose is excreted as parent drug. in feces, approximately 15% of the dose is excreted as parent drug. the mean plasma terminal half-life (t 1/2 ) for dapagliflozin is approximately 12.9 hours following a single oral dose of dapagliflozin 10 mg. saxagliptin saxagliptin is eliminated by both renal and hepatic pathways. following a single 50 mg dose of [ 14 c]-saxagliptin, 24%, 36%, and 75% of the dose was excreted in the urine as saxagliptin, its active metabolite, and total radioactivity, respectively. the average renal clearance of saxagliptin (~230 ml/min) was greater than the average estimated glomerular filtration rate (~120 ml/min), suggesting some active renal excretion. a total of 22% of the administered radioactivity was recovered in feces representing the fraction of the saxagliptin dose excreted in bile and/or unabsorbed drug from the gastrointestinal tract. following a single oral dose of saxagliptin 5 mg to healthy subjects, the mean plasma terminal half-life (t 1/2 ) for saxagliptin and its active metabolite was 2.5 and 3.1 hours, respectively. specific populations effects of age, gender, race and body weight on pharmacokinetics based on a population pharmacokinetic analysis, age, gender, race, and body weight do not have a clinically meaningful effect on the pharmacokinetics of saxagliptin and dapagliflozin. renal impairment dapagliflozin at steady state (20 mg once daily dapagliflozin for 7 days), patients with type 2 diabetes mellitus with mild, moderate, or severe renal impairment (as determined by egfr) had geometric mean systemic exposures of dapagliflozin that were 45%, 100%, and 200% higher, respectively, as compared to patients with type 2 diabetes mellitus with normal renal function. higher systemic exposure of dapagliflozin in patients with type 2 diabetes mellitus with renal impairment did not result in a correspondingly higher 24-hour urinary glucose excretion. the steady-state 24-hour urinary glucose excretion in patients with type 2 diabetes mellitus and mild, moderate, and severe renal impairment was 42%, 80%, and 90% lower, respectively, than in patients with type 2 diabetes mellitus with normal renal function. the impact of hemodialysis on dapagliflozin exposure is not known [see dosage and administration (2.3) , warnings and precautions (5.4) and use in specific populations (8.6) ] . saxagliptin a single-dose, open-label study was conducted to evaluate the pharmacokinetics of saxagliptin (10 mg dose) in subjects with varying degrees of chronic renal impairment compared to subjects with normal renal function. the 10 mg dosage is not an approved dosage. the degree of renal impairment did not affect c max of saxagliptin or its metabolite. in subjects with moderate renal impairment (egfr 30 to less than 45 ml/min/1.73 m 2 ), severe renal impairment (egfr 15 to less than 30 ml/min/1.73 m 2 ) and esrd patient on hemodialysis, the auc values of saxagliptin or its active metabolite were >2-fold higher than auc values in subjects with normal renal function. qtern is contraindicated in patients with an egfr <45 ml/min/1.73 m 2 . hepatic impairment dapagliflozin in subjects with mild and moderate hepatic impairment (child-pugh classes a and b), mean c max and auc of dapagliflozin were up to 12% and 36% higher, respectively, as compared to healthy matched control subjects following single-dose administration of 10 mg dapagliflozin. these differences were not considered to be clinically meaningful. in patients with severe hepatic impairment (child-pugh class c), mean c max and auc of dapagliflozin were up to 40% and 67% higher, respectively, as compared to healthy matched controls [see use in specific populations (8.7) ] . saxagliptin in subjects with hepatic impairment (child-pugh classes a, b, and c), mean c max and auc of saxagliptin were up to 8% and 77% higher, respectively, compared to healthy matched controls following administration of a single 10 mg dose of saxagliptin. the 10 mg dosage is not an approved dosage. the corresponding c max and auc of the active metabolite were up to 59% and 33% lower, respectively, compared to healthy matched controls. these differences are not considered to be clinically meaningful. pediatric pharmacokinetics of qtern in the pediatric population has not been studied. drug interactions saxagliptin and dapagliflozin the lack of pharmacokinetic interaction between dapagliflozin and saxagliptin was demonstrated in a drug-drug interaction study between dapagliflozin and saxagliptin. dapagliflozin in vitro assessment of drug interactions the metabolism of dapagliflozin is primarily via glucuronide conjugation mediated by udp glucuronosyltransferase 1a9 (ugt1a9). in in vitro studies, dapagliflozin and dapagliflozin 3-o-glucuronide neither inhibited cyp 1a2, 2c9, 2c19, 2d6, or 3a4, nor induced cyp 1a2, 2b6, or 3a4. dapagliflozin is a weak substrate of the p-glycoprotein (pâgp) active transporter, and dapagliflozin 3-o-glucuronide is a substrate for the oat3 active transporter. dapagliflozin or dapagliflozin 3-o-glucuronide did not meaningfully inhibit pâgp, oct2, oat1, or oat3 active transporters. overall, dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are pâgp, oct2, oat1, or oat3 substrates. effects of other drugs on dapagliflozin table 3 shows the effect of coadministered drugs on the pharmacokinetics of dapagliflozin. table 3: effects of coadministered drugs on dapagliflozin systemic exposure coadministered drug (dose regimen) single dose unless otherwise noted. dapagliflozin (dose regimen) dapagliflozin change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max oral antidiabetic agents metformin (1000 mg) 20 mg â1% â7% pioglitazone (45 mg) 50 mg 0% â9% sitagliptin (100 mg) 20 mg â8% â4% glimepiride (4 mg) 20 mg â1% â1% voglibose (0.2 mg three times daily) 10 mg â1% â4% saxagliptin (5 mg single dose) 10 mg (single dose) â2% â6% other medications hydrochlorothiazide (25 mg) 50 mg â7% â1% bumetanide (1 mg) 10 mg once daily for 7 days â5% â8% valsartan (320 mg) 20 mg â2% â12% simvastatin (40 mg) 20 mg â1% â2% antiâinfective agent rifampin (600 mg once daily for 6 days) 10 mg â22% â7% nonsteroidal antiâinflammatory agent mefenamic acid (loading dose of 500 mg followed by 14 doses of 250 mg every 6 hours) 10 mg â51% â13% effects of dapagliflozin on other drugs table 4 shows the effect of dapagliflozin on other coadministered drugs. dapagliflozin did not meaningfully affect the pharmacokinetics of the coadministered drugs. table 4: effects of dapagliflozin on the systemic exposures of coadministered drugs coadministered drug (dose regimen) single dose unless otherwise noted. dapagliflozin (dose regimen) coadministered drug change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max oral antidiabetic agents metformin (1000 mg) 20 mg 0% â5% pioglitazone (45 mg) 50 mg 0% â7% sitagliptin (100 mg) 20 mg â1% â11% glimepiride (4 mg) 20 mg â13% â4% other medications hydrochlorothiazide (25 mg) 50 mg â1% â5% bumetanide (1 mg) 10 mg once daily for 7 days â13% â13% valsartan (320 mg) 20 mg â5% â6% simvastatin (40 mg) 20 mg â19% â6% digoxin (0.25 mg) 20 mg loading dose then 10 mg once daily for 7 days 0% â1% warfarin (25 mg) sâwarfarin râwarfarin 20 mg loading dose then 10 mg once daily for 7 days â3% â6% â7% â8% saxagliptin in vitro assessment of drug interactions the metabolism of saxagliptin is primarily mediated by cyp3a4/5. in in vitro studies, saxagliptin and its active metabolite did not inhibit cyp1a2, 2a6, 2b6, 2c9, 2c19, 2d6, 2e1, or 3a4, or induce cyp1a2, 2b6, 2c9, or 3a4. therefore, saxagliptin is not expected to alter the metabolic clearance of coadministered drugs that are metabolized by these enzymes. saxagliptin is a p-glycoprotein (pâgp) substrate but is not a significant inhibitor or inducer of pâgp. effects of other drugs on saxagliptin and its active metabolite, 5-hydroxy saxagliptin table 5: effect of coadministered drugs on systemic exposures of saxagliptin and its active metabolite, 5-hydroxy saxagliptin coadministered drug dosage of coadministered drug single dose unless otherwise noted. dosage of saxagliptin saxagliptin change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max metformin 1000 mg 100 mg saxagliptin 5âhydroxy saxagliptin â2% â1% â21% â12% glyburide 5 mg 10 mg saxagliptin 5âhydroxy saxagliptin â2% nd â8% nd pioglitazone results exclude one subject. 45 mg qd for 10 days 10 mg qd for 5 days saxagliptin 5âhydroxy saxagliptin â11% nd â11% nd dapagliflozin 10 mg single dose 5 mg single dose saxagliptin 5-hydroxy saxagliptin â1% â9% â7% â6% digoxin 0.25 mg q6h first day followed by q12h second day followed by qd for 5 days 10 mg qd for 7 days saxagliptin 5âhydroxy saxagliptin â5% â6% â1% â2% simvastatin 40 mg qd for 8 days 10 mg qd for 4 days saxagliptin 5âhydroxy saxagliptin â12% â2% â21% â8% diltiazem 360 mg la qd for 9 days 10 mg saxagliptin 5âhydroxy saxagliptin â109% â34% â63% â43% rifampin the plasma dipeptidyl peptidase-4 (dpp-4) activity inhibition over a 24-hour dose interval was not affected by rifampin. 600 mg qd for 6 days 5 mg saxagliptin 5âhydroxy saxagliptin â76% â3% â53% â39% omeprazole 40 mg qd for 5 days 10 mg saxagliptin 5âhydroxy saxagliptin â13% nd â2% nd aluminum hydroxide + magnesium hydroxide + simethicone aluminum hydroxide: 2400 mg magnesium hydroxide: 2400 mg simethicone: 240 mg 10 mg saxagliptin 5âhydroxy saxagliptin â3% nd â26% nd famotidine 40 mg 10 mg saxagliptin 5âhydroxy saxagliptin â3% nd â14% nd saxagliptin coadministered with strong cyp3a4/5 inhibitors [see drug interactions (7) and dosage and administration (2.4) ] : ketoconazole 200 mg bid for 9 days 100 mg saxagliptin 5âhydroxy saxagliptin â145% â88% â62% â95% ketoconazole 200 mg bid for 7 days 20 mg saxagliptin 5âhydroxy saxagliptin â267% nd â144% nd nd=not determined; qd=once daily; q6h=every 6 hours; q12h=every 12 hours; bid=twice daily; la=long acting. effects of saxagliptin on other drugs table 6: effect of saxagliptin on systemic exposures of coadministered drugs coadministered drug dosage of coadministered drug single dose unless otherwise noted. dosage of saxagliptin coadministered drug change percent change (with/without coadministered drug and no change=0%); â and â indicate the exposure increase and decrease, respectively. in auc auc=auc(inf) for drugs given as single dose and auc=auc(tau) for drugs given in multiple doses. change in c max metformin 1000 mg 100 mg metformin â20% â9% glyburide 5 mg 10 mg glyburide â6% â16% pioglitazone results include all subjects. 45 mg qd for 10 days 10 mg qd for 5 days pioglitazone hydroxyâpioglitazone â8% nd â14% nd digoxin 0.25 mg q6h first day followed by q12h second day followed by qd for 5 days 10 mg qd for 7 days digoxin â6% â9% simvastatin 40 mg qd for 8 days 10 mg qd for 4 days simvastatin simvastatin acid â4% â16% â12% 0% diltiazem 360 mg la qd for 9 days 10 mg diltiazem â10% â16% ketoconazole 200 mg bid for 9 days 100 mg ketoconazole â13% â16% ethinyl estradiol and norgestimate ethinyl estradiol 0.035 mg and norgestimate 0.250 mg for 21 days 5 mg qd for 21 days ethinyl estradiol norelgestromin norgestrel â7% â10% â13% â2% â9% â17% nd=not determined; qd=once daily; q6h=every 6 hours; q12h=every 12 hours; bid=twice daily; la=long acting.
Nonclinical Toxicology:
13 nonclinical toxicology 13.1 carcinogenesis, mutagenesis, impairment of fertility qtern no animal studies have been conducted with the combined products in qtern to evaluate carcinogenesis, mutagenesis, or impairment of fertility. the following data are based on the findings in the studies with dapagliflozin and saxagliptin individually. dapagliflozin carcinogenesis dapagliflozin did not induce tumors in either mice or rats at any of the doses evaluated in 2-year carcinogenicity studies. oral doses in mice consisted of 5, 15, and 40 mg/kg/day in males and 2, 10, and 20 mg/kg/day in females, and oral doses in rats were 0.5, 2, and 10 mg/kg/day for both males and females. the highest doses evaluated in mice were approximately 72-times (males) and 105-times (females) the clinical dose of 10 mg per day, based on auc exposure. in rats, the highest dose was approximately 131-times (males) and 186-times (females) the clinical dose of 10 mg per day, based on auc exposure. mutagenesis dapagli
Read more...flozin was negative in the ames mutagenicity assay and was positive in a series of in vitro clastogenicity assays in the presence of s9 activation and at concentrations greater than or equal to 100 µg/ml. dapagliflozin was negative for clastogenicity in a series of in vivo studies evaluating micronuclei or dna repair in rats at exposure multiples greater than 2100-times the clinical dose. impairment of fertility dapagliflozin had no effects on mating, fertility, or early embryonic development in treated male or female rats at exposure multiples less than or equal to 1708-times and 998-times the maximum recommended human dose in males and females, respectively. saxagliptin carcinogenesis carcinogenicity was evaluated in 2-year studies conducted in cd-1 mice and sprague-dawley rats. saxagliptin did not increase the incidence of tumors in mice dosed orally at 50, 250, and 600 mg/kg up to 870-times (males) and 1165-times (females) the 5 mg/day clinical dose, based on auc. saxagliptin did not increase the incidence of tumors in rats dosed orally at 25, 75, 150, and 300 mg/kg up to 355-times (males) and 2217-times (females) the 5 mg/day clinical dose, based on auc. mutagenesis saxagliptin was not mutagenic or clastogenic in a battery of genotoxicity tests (ames bacterial mutagenesis, human and rat lymphocyte cytogenetics, rat bone marrow micronucleus and dna repair assays). the active metabolite of saxagliptin was not mutagenic in an ames bacterial assay. impairment of fertility saxagliptin administered to rats had no effect on fertility or the ability to maintain a litter at exposures up to 603-times and 776-times the 5 mg clinical dose in males and females, based on auc. 13.2 animal toxicology and/or pharmacology saxagliptin saxagliptin produced adverse skin changes in the extremities of cynomolgus monkeys (scabs and/or ulceration of tail, digits, scrotum, and/or nose). skin lesions were reversible within exposure approximately 20-times the 5 mg clinical dose, but in some cases were irreversible and necrotizing at higher exposures. adverse skin changes were not observed at exposures similar to (1- to 3-times) the 5 mg clinical dose. clinical correlates to skin lesions in monkeys have not been observed in human clinical trials of saxagliptin.
Carcinogenesis and Mutagenesis and Impairment of Fertility:
13.1 carcinogenesis, mutagenesis, impairment of fertility qtern no animal studies have been conducted with the combined products in qtern to evaluate carcinogenesis, mutagenesis, or impairment of fertility. the following data are based on the findings in the studies with dapagliflozin and saxagliptin individually. dapagliflozin carcinogenesis dapagliflozin did not induce tumors in either mice or rats at any of the doses evaluated in 2-year carcinogenicity studies. oral doses in mice consisted of 5, 15, and 40 mg/kg/day in males and 2, 10, and 20 mg/kg/day in females, and oral doses in rats were 0.5, 2, and 10 mg/kg/day for both males and females. the highest doses evaluated in mice were approximately 72-times (males) and 105-times (females) the clinical dose of 10 mg per day, based on auc exposure. in rats, the highest dose was approximately 131-times (males) and 186-times (females) the clinical dose of 10 mg per day, based on auc exposure. mutagenesis dapagliflozin was negative in the
Read more... ames mutagenicity assay and was positive in a series of in vitro clastogenicity assays in the presence of s9 activation and at concentrations greater than or equal to 100 µg/ml. dapagliflozin was negative for clastogenicity in a series of in vivo studies evaluating micronuclei or dna repair in rats at exposure multiples greater than 2100-times the clinical dose. impairment of fertility dapagliflozin had no effects on mating, fertility, or early embryonic development in treated male or female rats at exposure multiples less than or equal to 1708-times and 998-times the maximum recommended human dose in males and females, respectively. saxagliptin carcinogenesis carcinogenicity was evaluated in 2-year studies conducted in cd-1 mice and sprague-dawley rats. saxagliptin did not increase the incidence of tumors in mice dosed orally at 50, 250, and 600 mg/kg up to 870-times (males) and 1165-times (females) the 5 mg/day clinical dose, based on auc. saxagliptin did not increase the incidence of tumors in rats dosed orally at 25, 75, 150, and 300 mg/kg up to 355-times (males) and 2217-times (females) the 5 mg/day clinical dose, based on auc. mutagenesis saxagliptin was not mutagenic or clastogenic in a battery of genotoxicity tests (ames bacterial mutagenesis, human and rat lymphocyte cytogenetics, rat bone marrow micronucleus and dna repair assays). the active metabolite of saxagliptin was not mutagenic in an ames bacterial assay. impairment of fertility saxagliptin administered to rats had no effect on fertility or the ability to maintain a litter at exposures up to 603-times and 776-times the 5 mg clinical dose in males and females, based on auc.
Clinical Studies:
14 clinical studies the dapagliflozin and saxagliptin in combination with metformin has been studied in adult patients with type 2 diabetes mellitus (t2dm) inadequately controlled on metformin in the following studies. treatment with dapagliflozin and saxagliptin and metformin (combination or add-on therapy) at all doses produced statistically significant improvements in hba1c compared to the active comparator or placebo study arms in combination with metformin. 14.1 add-on therapy with dapagliflozin plus saxagliptin in patients on metformin adult patients with inadequately controlled type 2 diabetes mellitus participated in 2 active-controlled studies of 24-week duration to evaluate therapy with 5 mg dapagliflozin/5 mg saxagliptin or 10 mg dapagliflozin/5 mg saxagliptin combinations on a background of metformin. one study was a 24-week randomized, double-blind, active-controlled, parallel-group study (nct02681094) in t2dm patients with an hba1c â¥7.5% and â¤10.0%. patients wer
Read more...e on a stable dose of metformin hcl (â¥1500 mg per day) for at least 8 weeks prior to being randomized to one of three double-blind treatment groups to receive 5 mg dapagliflozin and 5 mg saxagliptin added to metformin, 5 mg saxagliptin and placebo added to metformin, or 5 mg dapagliflozin and placebo added to metformin. at week 24, concomitant addition of 5 mg dapagliflozin and 5 mg saxagliptin plus metformin resulted in statistically significant decreases in hba1c, and a larger proportion of patients achieving the therapeutic glycemic goal of hba1c <7%, compared to dapagliflozin plus metformin or saxagliptin plus metformin (see table 7). table 7: hba1c results at week 24 with the combination of 5 mg dapagliflozin and 5 mg saxagliptin plus metformin analysis of covariance including all post-baseline data regardless of rescue or treatment discontinuation. model estimates calculated using multiple imputation to model washout of the treatment effect using control arm data for all subjects having missing week 24 data. efficacy parameter 5 mg dapagliflozin and 5 mg saxagliptin + metformin 5 mg dapagliflozin and 5 mg saxagliptin + metformin 5 mg dapagliflozin + metformin 5 mg saxagliptin + metformin n the number of randomized subjects who took at least one dose of double-blind study medication and had a baseline value for hba1c. 290 289 291 baseline (mean) 8.1 8.2 8.3 change from baseline (adjusted mean) (95% ci) â1.02 (â1.13, â0.90) â0.62 (â0.73, â0.51) â0.69 (â0.80, â0.59) difference from dapagliflozin + metformin (adjusted mean) (95% ci) â0.40 p-value <0.0001. (â0.55, â0.24) difference from saxagliptin + metformin (adjusted mean) (95% ci) â0.32 (â0.48, â0.17) percent of patients achieving hba1c <7% 42.8 21.8 p-value <0.0001 vs. dapagliflozin and saxagliptin plus metformin. 28.5 p-value = 0.0018 vs. dapagliflozin and saxagliptin plus metformin. the adjusted mean change from baseline for body weight at week 24, using values regardless of rescue or treatment discontinuation, was -2.0 kg for the 5 mg dapagliflozin and 5 mg saxagliptin plus metformin group, -2.1 kg for the 5 mg dapagliflozin plus metformin group, and -0.4 kg for the 5 mg saxagliptin plus metformin group. the difference in mean body weight between the 5 mg dapagliflozin and 5 mg saxagliptin plus metformin group and the 5 mg dapagliflozin plus metformin group was -1.6 kg (95% ci [-2.1, -1.0]). the second study was a 24-week randomized, double-blind, active comparator-controlled superiority study (nct016060007) that compared once daily 10 mg dapagliflozin and 5 mg saxagliptin coadministered in combination with metformin xr with either 10 mg dapagliflozin and placebo added to metformin or 5 mg saxagliptin and placebo added to metformin in t2dm adult patients with inadequate glycemic control on metformin alone (hba1c â¥8% and â¤12%). at week 24, concomitant addition of 10 mg dapagliflozin and 5 mg saxagliptin plus metformin resulted in statistically significant decreases in hba1c, and a larger proportion of patients achieving an hba1c <7%, compared to dapagliflozin plus metformin or saxagliptin plus metformin (see table 8). table 8: hba1c results at week 24 with the combination of 10 mg dapagliflozin and 5 mg saxagliptin plus metformin analysis of covariance including all post-baseline data regardless of rescue or treatment discontinuation. model estimates calculated using multiple imputation to model washout of the treatment effect using control arm data for all subjects having missing week 24 data. efficacy parameter 10 mg dapagliflozin and 5 mg saxagliptin + metformin 10 mg dapagliflozin and 5 mg saxagliptin + metformin 10 mg dapagliflozin + metformin 5 mg saxagliptin + metformin n the number of randomized subjects who took at least one dose of double-blind study medication and had a baseline value for hba1c. 179 179 176 baseline (mean) 8.9 8.9 9.0 change from baseline (adjusted mean) (95% ci) â1.49 (â1.64, â1.34) â1.23 (â1.38, â1.08) â1.00 (â1.15, â0.85) difference from dapagliflozin + metformin (adjusted mean) (95% ci) â0.26 p-value=0.0148. (â0.47, â0.05) difference from saxagliptin + metformin (adjusted mean) (95% ci) â0.49 p-value <0.0001. (â0.70, â0.27) percent of patients achieving hba1c <7% 40.2 not statistically significant based on the prespecified method for controlling type i error. 21.2 16.5 the adjusted mean change from baseline for body weight at week 24, using values regardless of rescue or treatment discontinuation, was -2.0 kg for the 10 mg dapagliflozin and 5 mg saxagliptin plus metformin group, -2.3 kg for the 10 mg dapagliflozin plus metformin group, and 0 kg for the 5 mg saxagliptin plus metformin group. 14.2 add-on therapy with saxagliptin in patients on dapagliflozin plus metformin a total of 315 patients with type 2 diabetes mellitus participated in this 24-week randomized, double-blind, placebo-controlled trial to evaluate the efficacy and safety of saxagliptin added to dapagliflozin and metformin in patients with a baseline of hba1c â¥7% to â¤10.5% (nct01619059). the mean age of these subjects was 54.6 years, 1.6% were 75 years or older and 52.7% were female. the population was 87.9% white, 6.3% black or african american, 4.1% asian, and 1.6% other race. at baseline the population had diabetes for an average of 7.7 years and a mean hba1c of 7.9%. the mean egfr at baseline was 93.4 ml/min/1.73 m 2 . patients were required to be on a stable dose of metformin (â¥1500 mg per day) for at least 8 weeks prior to enrollment. eligible subjects who completed the screening period entered the lead-in treatment period, which included 16 weeks of open-label metformin and 10 mg dapagliflozin treatment. following the lead-in period, eligible patients were randomized to 5 mg saxagliptin (n=153) or placebo (n=162). the group treated with add-on saxagliptin had statistically significant greater reductions in hba1c from baseline versus the group treated with placebo (see table 9). table 9: hba1c change from baseline at week 24 in a placebo-controlled trial of saxagliptin as add-on to dapagliflozin and metformin there were 6.5% (n=10) of randomized subjects in the saxagliptin arm and 3.1% (n=5) in the placebo arm for whom change from baseline hba1c data was missing at week 24. of the subjects who discontinued study medication early, 9.1% (1 of 11) in the saxagliptin arm and 16.7% (1 of 6) in the placebo arm had hba1c measured at week 24. efficacy parameter 5 mg saxagliptin (n=153) n is the number of randomized and treated patients. placebo (n=162) in combination with dapagliflozin and metformin hba1c (%) at week 24 analysis of covariance including all post-baseline data regardless of rescue or treatment discontinuation. model estimates calculated using multiple imputation to model washout of the treatment effect using placebo data for all subjects having missing week 24 data. baseline (mean) 8.0 7.9 change from baseline (adjusted mean least squares mean adjusted for baseline value. ) 95% confidence interval â0.5 (â0.6, â0.4) â0.2 (â0.3, â0.1) difference from placebo (adjusted mean) 95% confidence interval â0.4 p-value <0.0001. (â0.5, â0.2) percent of patients achieving hba1c <7% 35.3 23.1 14.3 cardiovascular safety trial the cardiovascular risk of saxagliptin was evaluated in savor (saxagliptin assessment of vascular outcomes recorded in patients with diabetes mellitus - thrombolysis in myocardial infarction), a multicenter, multinational, randomized, double-blind trial comparing saxagliptin (n=8280) to placebo (n=8212), in adult patients with type 2 diabetes mellitus at high risk for atherosclerotic cardiovascular disease. of the randomized study subjects, 97.5% completed the trial, and the median duration of follow-up was approximately 2 years (nct01107886). subjects were at least 40 years of age, had hba1c â¥6.5%, and multiple risk factors (21% of randomized subjects) for cardiovascular disease (age â¥55 years for men and â¥60 years for women plus at least one additional risk factor of dyslipidemia, hypertension, or current cigarette smoking) or established (79% of the randomized subjects) cardiovascular disease defined as a history of ischemic heart disease, peripheral vascular disease, or ischemic stroke. overall, the use of diabetes medications was balanced across treatment groups (metformin 69%, insulin 41%, sulfonylureas 40%, and tzds 6%). the use of cardiovascular disease medications was also balanced (angiotensin-converting enzyme [ace] inhibitors or angiotensin receptor blockers [arbs] 79%, statins 78%, aspirin 75%, beta-blockers 62%, and non-aspirin antiplatelet medications 24%). the majority of subjects were male (67%) and caucasian (75%) with a mean age of 65 years. approximately 16% of the population had moderate (egfr â¥30 to â¤50 ml/min/1.73 m 2 ) to severe (egfr <30 ml/min/1.73 m 2 ) renal impairment, and 13% had a prior history of heart failure. qtern is contraindicated in patients with an egfr <45 ml/min/1.73 m 2 . subjects had a median duration of type 2 diabetes mellitus of approximately 10 years and a mean baseline hba1c level of 8.0%. the primary analysis in savor was time to first occurrence of a major adverse cardiac event (mace). a major adverse cardiac event in savor was defined as a cardiovascular death or a nonfatal myocardial infarction (mi) or a nonfatal ischemic stroke. the incidence rate of mace was similar in both treatment arms: 3.8 mace per 100 patient-years on placebo vs. 3.8 mace per 100 patient-years on saxagliptin with an estimated hr: 1.0; 95.1% ci: (0.89, 1.12). the upper bound of this confidence interval, 1.12, excluded a risk margin larger than 1.3. vital status was obtained for 99% of subjects in the trial. there were 798 deaths in the savor trial. numerically more patients (5.1%) died in the saxagliptin group than in the placebo group (4.6%). the risk of deaths from all-cause mortality was not statistically different between the treatment groups (hr: 1.11; 95.1% ci: 0.96, 1.27).
How Supplied:
16 how supplied/storage and handling how supplied qtern ® (dapagliflozin and saxagliptin) tablets are available in packages as listed: tablet strength filmâcoated tablet color / shape tablet markings pack size ndc code 5 mg dapagliflozin /5 mg saxagliptin light purple to reddish purple, biconvex, round â1120â printed on both sides, in blue ink bottles of 30 bottles of 90 bottles of 500 0310-6770-30 0310-6770-90 0310-6770-50 10 mg dapagliflozin /5 mg saxagliptin light brown to brown, biconvex, round â1122â printed on both sides, in blue ink bottles of 30 bottles of 90 bottles of 500 0310â6780â30 0310â6780â90 0310â6780â50 storage and handling store at 20°c to 25°c (68°f to 77°f); excursions permitted between 15°c to 30°c (59°f to 86°f) [see usp controlled room temperature].
Information for Patients:
17 patient counseling information advise the patient to read the fda-approved patient labeling (medication guide). pancreatitis ⢠inform patients that acute pancreatitis has been reported during postmarketing use of saxagliptin. inform patients that persistent severe abdominal pain, sometimes radiating to the back, which may or may not be accompanied by vomiting, is the hallmark symptom of acute pancreatitis. ⢠instruct patients to promptly discontinue qtern and contact their healthcare provider if persistent severe abdominal pain occurs [see warnings and precautions (5.1) ] . heart failure ⢠inform patients of the signs and symptoms of heart failure. instruct patients to contact their healthcare provider as soon as possible if they experience symptoms of heart failure, including increasing shortness of breath, rapid increase in weight or swelling of the feet [see warnings and precautions (5.2) ] . ketoacidosis ⢠inform patients that ketoacidosis is a serious life-t
Read more...hreatening condition and that cases of ketoacidosis have been reported during use of dapagliflozin, sometimes associated with illness or surgery among other risk factors. instruct patients to check ketones (when possible) if symptoms consistent with ketoacidosis occur even if blood glucose is not elevated. if symptoms of ketoacidosis (including nausea, vomiting, abdominal pain, tiredness, and labored breathing) occur, instruct patients to discontinue qtern and seek medical attention immediately [see warnings and precautions (5.3) ] . volume depletion ⢠inform patients that symptomatic hypotension may occur with qtern and advise them to contact their healthcare provider if they experience such symptoms. inform patients that dehydration may increase the risk for hypotension, and to have adequate fluid intake [see warnings and precautions (5.4) ] . serious urinary tract infections ⢠inform patients of the potential for urinary tract infections, which may be serious. inform them of the symptoms of urinary tract infections and advise them to seek medical advice if such symptoms occur [see warnings and precautions (5.5) ] . hypoglycemia ⢠inform patients that the incidence of hypoglycemia may be increased when qtern is added to an insulin secretagogue (e.g., sulfonylurea) or insulin [see warnings and precautions (5.6) ]. necrotizing fasciitis of the perineum (fournierâs gangrene) ⢠inform patients that necrotizing infections of the perineum (fournierâs gangrene) have occurred with dapagliflozin, a component of qtern. counsel patients to promptly seek medical attention if they develop pain or tenderness, redness, or swelling of the genitals or the area from the genitals back to the rectum, along with a fever above 100.4°f or malaise [see warnings and precautions (5.7) ] . hypersensitivity reactions ⢠inform patients that serious hypersensitivity reactions (e.g., anaphylaxis, angioedema, urticaria, and exfoliative skin conditions) have been reported with dapagliflozin and saxagliptin, components of qtern. symptoms of these allergic reactions include: rash, skin flaking or peeling, urticaria, swelling of the skin, or swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing. ⢠advise patients to immediately report any signs or symptoms suggesting allergic reaction, angioedema or exfoliative skin conditions, and stop taking qtern and seek medical advice promptly [see warnings and precautions (5.8) ] . genital mycotic infections in females (e.g., vulvovaginitis) ⢠inform female patients that vaginal yeast infections may occur and provide them with information on the signs and symptoms of vaginal yeast infections. advise them of treatment options and when to seek medical advice [see warnings and precautions (5.9) ] . genital mycotic infections in males (e.g., balanitis or balanoposthitis) ⢠inform male patients that yeast infections of the penis (e.g., balanitis or balanoposthitis) may occur, especially in patients with prior history. provide them with information on the signs and symptoms of balanitis and balanoposthitis (rash or redness of the glans or foreskin of the penis). advise them of treatment options and when to seek medical advice [see warnings and precautions (5.9) ] . severe and disabling arthralgia ⢠inform patients that severe and disabling joint pain may occur with this class of drugs. the time to onset of symptoms can range from one day to years. instruct patients to seek medical advice if severe joint pain occurs [see warnings and precautions (5.10) ] . bullous pemphigoid ⢠inform patients that bullous pemphigoid may occur with qtern. instruct patients to seek medical advice if blisters or erosions occur [see warnings and precautions (5.11) ] . pregnancy ⢠advise pregnant patients of the potential risk to a fetus with treatment with qtern. instruct patients to immediately inform their healthcare provider if pregnant or planning to become pregnant [see use in specific populations (8.1) ] . lactating mothers ⢠advise patients that use of qtern is not recommended while breastfeeding [see use in specific populations (8.2) ] . laboratory tests ⢠inform patients that due to its mechanism of action, patients taking qtern will test positive for glucose in their urine. administration ⢠instruct patients that qtern must be swallowed whole and not crushed or chewed. missed dose ⢠if a dose is missed, advise patients to take it as soon as it is remembered unless it is almost time for the next dose, in which case patients should skip the missed dose and take the medicine at the next regularly scheduled time. advise patients not to take two doses of qtern at the same time. distributed by: astrazeneca pharmaceuticals lp wilmington, de 19850 qtern is a registered trademark of the astrazeneca group of companies.
Package Label Principal Display Panel:
Package/label principal display panel â 5 mg/5 mg 30 tablets ndc 0310-6770-30 qtern ® (dapagliflozin and saxagliptin) tablets 5 mg/5 mg dispense with enclosed medication guide rx only mfd. for: astrazeneca pharmaceuticals lp wilmington, de 19850 astrazeneca 5mg5mg
Package/label principal display panel â 10 mg/5 mg 30 tablets ndc 0310-6780-30 qtern ® (dapagliflozin and saxagliptin) tablets 10 mg/5 mg dispense with enclosed medication guide rx only mfd. for: astrazeneca pharmaceuticals lp wilmington, de 19850 astrazeneca 5mg5mg